

Essentials of
Mechatronics

Essentials of
Mechatronics

John Billingsley
University of Southern Queensland

Queensland, Australia

A John Wiley & Sons, Inc., Publication

Copyright © 2006 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifi cally disclaim any
implied warranties of merchantability or fi tness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profi t or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside
the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic formats. For more information about Wiley
products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Billingsley, J. (John)
 Essentials of mechatronics / by John Billingsley.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13 978-0-471-72341-7 (cloth)
 ISBN-10 0-471-72341-X (cloth)
1. Mechatronics. I. Title.
 TJ163.12.B55 2006
 621–dc22
 2005032762

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

v

Contents

Preface ix

Acknowledgments xi

 1. Introduction 1

 1.1 A Personal View / 1
 1.2 What Is and Is Not Mechatronics? / 6

 2. The Bare Essentials 9

 2.1 Actuators / 9
 2.2 Sensors / 16
 2.3 Sensors for Vision / 22
 2.4 The Computer / 25
 2.5 Interface Electronics for Output / 27
 2.6 Interface Electronics for Input / 32
 2.7 Pragmatic Control / 36
 2.8 Robotics and Kinematics / 41

 3. Gaining Experience 43

 3.1 Coming to Grips with QBasic / 45
 3.2 The Simplest Mobile Robot / 49
 3.3 Ball and Beam / 56

vi CONTENTS

 3.4 “Professional” Position Control / 64
 3.5 An Inverted Pendulum / 80

 4. Introduction to the Next Level 91

 4.1 The www.EssMech.com Website / 92

 5. Electronic Design 95

 5.1 The Rudiments of Circuit Theory / 95
 5.2 The Operational Amplifi er / 99
 5.3 Filters for Sensors / 103
 5.4 Logic and Latches / 113

 6. Essential Control Theory 117

 6.1 State Variables / 117
 6.2 Simulation / 120
 6.3 Solving the First-Order Equation / 121
 6.4 Second-Order Problems / 123
 6.5 Modeling Position Control / 125
 6.6 Matrix State Equations / 127
 6.7 Analog Simulation / 128
 6.8 More Formal Computer Simulation / 130

 7. Vectors, Matrices, and Tensors 131

 7.1 Meet the Matrix / 131
 7.2 More on Vectors / 132
 7.3 Matrix Multiplication / 134
 7.4 Transposition of Matrices / 135
 7.5 The Unit Matrix / 136
 7.6 Coordinate Transformations / 136
 7.7 Matrices, Notation, and Computing / 138
 7.8 Eigenvectors / 140

 8. Mathematics for Control 143

 8.1 Differential Equations / 143
 8.2 The Laplace Transform / 146
 8.3 Difference Equations / 150
 8.4 The z Transform / 154
 8.5 Convolution and Correlation / 157

CONTENTS vii

 9. Robotics, Dynamics, and Kinematics 161

 9.1 Gears, Motors, and Mechanisms / 161
 9.2 Three-Dimensional Motion / 166
 9.3 Kinematic Chains / 173
 9.4 Robot Dynamics / 179
 9.5 Simulating a Robot / 180

10. Further Control Theory 185

 10.1 Control Topology and Nonlinear Control / 185
 10.2 Phase Plane Methods / 192
 10.3 Optimization / 199

11. Computer Implementation 203

 11.1 Essentials of Computing / 203
 11.2 Software Implications / 206
 11.3 Embedded Processors / 210

12. Machine Vision 221

 12.1 Vision Sensors / 221
 12.2 Acquiring an Image / 222
 12.3 Analyzing an Image / 224

13. Case Studies 237

 13.1 Robocow—a Mobile Robot for Training Horses / 237
 13.2 Vision Guidance for Tractors / 243
 13.3 A Shape Recognition Example / 251

14. The Human Element 255

 14.1 The User Interface / 255
 14.2 If All Else Fails, Read the Instructions / 259
 14.3 It Just Takes Imagination / 260

Index 263

ix

Preface

There are many defi nitions of mechatronics, but most involve the concept of
blending mechanisms, electronics, sensors, and control strategies into a design,
knitted together with software.

With an abundant wealth of topics to choose from, authors of mechatronics
textbooks are tempted to bundle them all into a massive compendium. This
book seeks to throw out all but the essentials; although perhaps in hanging
onto the baby, some bathwater will still remain.

There are a hundred ways of achieving all except the simplest of mecha-
tronic design tasks. At every step, choice and compromise will be involved.
Should a precision motor be used, or will a simple sensor and a sprinkle of
feedback allow something cheaper and easier to do the trick? What does the
end user ask for, really want, actually need—or eventually buy?

Specialists can handle the fi ne detail, the composition of the molded plastic,
the choice of components for the electronic interface, machining drawings,
embedded computer, or software development platform. At the top of the
pyramid, however, there must be a mechatronic designer capable of making
the design tradeoffs that will transform a client’s demands or a bright idea
into a successful commercial product.

In some ways, mechatronics is as much a philosophy as a science. At its
heart is a way of looking at tasks that will, if necessary, achieve their objective
by ducking aside into an alternative technology. The mechatronic engineer
knows where to look for the side roads and has a shrewd idea of the merits
of the diversion.

xi

Acknowledgments

This book is the result of so many infl uences that there is a danger of this
becoming the longest section. Perhaps I should start with the engineers of the
autopilot industry who introduced me to the practical aspects of control
system design. Laury Ambrose and Mike Skinner left me in no doubt as to
their opinions of the quality of the servo loop designed with my new graduate
academic skills.

Later, John Coales fi lled me with enthusiasm to research abstruse control
methods such as fast-model predictive control. My team of Cambridge
researchers, including David Hedgeland, John Moughton, Matthew Dixon,
and Roger Kinns, led the charge to embed processor boards in the most
unlikely applications.

In Portsmouth, life became even more exciting. Mechatronics and robotics
abounded with the help of Harjit Singh, Fazel Naghdy, David Harrison, David
Sanders, David Robinson, and many others. Arthur Collie lent the wisdom
of years in industry to a passion for walking robots. Tim Dadd, now my son-
in-law, joined me in meeting the problems of running a company that designed
software for embedding in mass-produced appliances.

Australia has been fun. Sam Cubero, Jason Stone, Matt Petty, Stuart
McCarthy, Brad Schultz, and others all pushed robotics forward, while Mark
Phythian has taken up the cudgels of running Micromouse and Bilby contests.
Mark Dunn has thrown himself into vision research, with more practical
applications than you can shake a stick at.

The achievements and energy of my children Berry-Anne, Richard, and
William have all helped to keep up my enthusiasm, while my wife Rosalind’s
play-writing successes have sometimes diverted my time to thespian
activities.

1

1
Introduction

1.1 A PERSONAL VIEW

Although many writers are happy to put a date on the day a Japanese (or was
it a Finn?) coined this rather ungainly word, mechatronics has been around
in spirit for many decades.

My fi rst brush with industry involved designing autopilots. The compu-
ters on which they were based used analog magnetic amplifi ers—and later
transistors—rather than the digital microcomputer we would expect today.
Nevertheless, how can we describe as anything but a robot a machine that
trundles through the sky, obeying commands computed from a multitude of
sensor signals that enable it to make a perfect automatic landing?

By the mid-1960s, some computers had started to shrink. While the Atlas
was fed a succession of jobs by an army of operators, an IBM1130, built into
a desklike console, allowed real time interaction by the user. Soon we were
able to buy “budget” single-board computers for a thousand British pounds.
Although these had a mere 16 kilobytes (kbytes) of memory, their potential
for mechatronics was immense.

One of my Cambridge researchers took on the task of revolutionizing the
phototypesetter. The current state of the art was to spin a disk of letter
images, triggering a fl ash to expose each letter onto photographic fi lm. This
was certainly “mechatronic” to an extent, requiring the precision positioning
and timing under electronic control, but the new approach distilled the essence
of mechatronics.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

2 INTRODUCTION

The method is now commonly found in the laser printer. A spinning mirror
scans a laser beam across the photosensitive fi lm, building up the image by
rapid switching of the beam. Letter shapes are held in computer memory, and
the entire mechanical design is simplifi ed.

I consider this tradeoff between mechanics, electronics, and computing
power to be the guiding principle of mechatronics.

The research team were soon knitting similar computers into a variety of
real-time applications, including an “acoustic telescope” to build the signals
from 14 microphones into an image of the source. Hydrofoils were simulated,
violins were analyzed for their “Stradivarius-like qualities,” and music was
synthesized. A display for a color television, novel in those days, depended
on a minimum of electronics and a wealth of software.

But computing power soon came in increasingly small packages. Texas
Instruments had produced a single chip that could function as a pocket cal-
culator. By the time I had moved from Cambridge to Portsmouth, Intel and
Motorola were head-to-head with competing microprocessors.

In Britain, the Microprocessor Awareness Project (MAP) triggered a
deluge of applications—but only a small proportion of them deserve truly to
be considered as mechatronics.

Industrial fi rms were offered 2000 pounds’-worth of consultancy to con-
sider how microprocessors could be added to their products. Some sharp
operators made a killing, providing virtually identical reports to a diversity
of clients. Others “brokered” projects to earnest academics. Printing machines
sprouted boxes with twinkling LEDs (light-emitting diodes), wiring and
relays patched on top of the “standard model.” In many cases it made the
machines virtually unusable and impossible to maintain.

Gradually, however, the concept percolated through that the computing
aspect could be made fundamental to the operation of a machine. The
mechanical precision and complexity could be traded off against electronics
and computing power, just as in the case of the typesetter.

One MAP project concerned the design of a clock for a domestic cooker.
Not very romantic, perhaps, but the client’s choice of the primordial chip as
used in the earliest pocket calculators made it a conundrum with attitude. It
took several years and many generations of the product to persuade the
company to adopt something simpler to program. The manufacturers of the
original chip kept halving their price.

The chips were supplied, mask-programmed, in batches of 10,000. That
concentrated the mind wonderfully on making sure that the code was correct.
But once we had weaned the company off the TMS1000, there was room in
the chip’s memory not only for the job at hand but also for the next version
we had in mind.

One focus of our research was the Craftsman Robot. An energy regulator
is the switching element behind the knob that allows the power of a cooking
ring to be varied. During its manufacture, several adjustments have to be
made. We used a Unimation Puma 560 robot to pick each regulator from a

A PERSONAL VIEW 3

tray and offer it to a test rig. Instead of acting as a simple “mover,” however,
the Puma was equipped with a screwdriver to adjust the regulator when it was
still held in its gripper. Of course, we could not resist taking the robot apart
and analyzing its software and drive circuitry.

Other industrial projects included marine autopilots and a fl ux-gate
compass. But another interest would soon seize my attention.

In 1979, planning started for holding the Euromicro conference in
London. Lionel Thompson, the chairman, wanted an added showpiece, and
his mind was on “The Amazing Micromouse Maze Contest” that had just
been announced by IEEE Spectrum. I put my hand up to organize the
contest.

I then started to follow the news from the United States. Blows were
nearly exchanged when the “dumb wall followers” sprinted through the
maze from the entrance at one corner to the exit at the other, much faster
than their brainier rivals. How could the rules be massaged to give brains the
edge?

Donald Michie, a guru of technical conundrums, was all for making the
objectives more abstract, perhaps adding a cat to the fray. The solution lay in
the opposite direction, to give the mouse builders more specifi c information
that could be designed into the logic of their machines. Our maze was speci-
fi ed as 16 × 16 squares, with the target at the center, not on the edge. In that
way, paths could circle the center to form “moats” that no mere wall-follower
could cross.

A preliminary run was held in Portsmouth in July, with results that literally
gave me nightmares. Of the six mice that competed, only one could make any
attempt to follow a passageway, let alone fi nd the center. Japanese observers
were there in force, cameras snapping away, and I was amazed that everyone
seemed to enjoy the show.

At the conference in September, 15 mice competed. A sleek machine from
Lausanne should perhaps have won—but it expected more precision of the
maze than the carpenters had provided and became lodged on a join in the
boards of the base.

The winner was a clanking contraption, cobbled together around a brilliant
maze-solving algorithm that has remained relevant to this day.

The contest went from strength to strength, held in Paris, Tampere, Madrid,
and Copenhagen, but for these fi rst few years something struck me as strange.
Not one of the winners was trained as an engineer. Great machines came
from mathematicians, computer maintenance staff, and programmers for
manufacturing industry, but engineers were notable by their absence.

In 1985 I was invited to Tsukuba, to see what the Japanese had made of
the contest. There were 200 contestants, but the champion, Idani, was not an
engineer in the formal sense. Later that year we took the contest back to the
United States—the Japanese funded the trip to put some life back into an old
adversary. A future champion was unearthed in MIT—but he was not then
an academic; he was part of the laboratory staff.

4 INTRODUCTION

So, what is it that defi nes a mechatronic engineer? What is the special
aptitude that singled out these champions? What had they learned from their
endeavors that was not to be found in a formal engineering course?

They were able to put together a concept in which strategy, computing
hardware, sensors, electronics, and motors were blended together in harmony,
not as a cobbled assembly of diverse technologies. Therefore we must distill
the “good bits” from the diverse range of specializations that make up engi-
neering as a whole.

Mobile robots are a fascinating application of mechatronics. A spinoff
of the cooker clock project was the addition to our team of a seasoned
researcher—a director of the company—who joined our Portsmouth research
group to indulge his obsession with legged robots. Robug I rather ominously
looked like a coffi n on somewhat wobbly legs. Robug II shed all unnecessary
weight and climbed walls. Together with Zig-Zag, it impressed the nuclear
industry enough that they started placing orders for the design of robots for
specifi c applications.

While we had been keen to give our robots intelligence, the last thing the
clients wanted was for a robot, clambering on a nuclear pressure vessel with
an angle grinder in its claw, to start showing initiative!

The market for these robots set a whole new direction for the company,
newly emerged from the Tube Investments Group via a management buyout.
Portsmouth Technology Consultants was born. I remained a director of the
new company, even though by then I had moved to Queensland, Australia.

Ten years later, despite some major European funding for walking robot
development, the company failed. The cloud had a silver lining. For scrap-
metal prices, we were able to buy for the University of Southern Queensland
the latest eight-legged walker, the result of a million dollars or more of
development.

Although we had already developed an Australian ceiling walker all of our
own, seen worldwide on BBC television, the research interest turned to agri-
cultural applications, in particular to the vision guidance of tractors. With a
videocamera, a computer, and a submodule for operating the hydraulic steer-
ing system, we were able to steer to an accuracy of better than an inch. The
project was a technical tour de force, but a commercial failure. In hindsight,
it is clear that the reason for the lack of sales was that we had set the price
too low. Yes, too low.

We aimed to sell the system to dealers for $5000, for them to sell on at
$10,000. That might appear to be a generous margin, but it was not enough.
A purchaser might work a property many hundreds of miles from the dealer.
A simple fault might render a quarter million dollar tractor unusable, and the
dealer would be called out. After a lengthy journey, the dealer was still likely
to be baffl ed.

A phoenix rose from the ashes of the project. An Australian company
started to market a GPS (Global Positioning System) guidance system, one
that displayed steering instructions to a human driver, at a price of many tens

A PERSONAL VIEW 5

of thousands of dollars. A demand was swiftly seen for an interface between
the GPS system and the actual steering of the tractor. The steering submodule
that was a small part of the vision guidance system was just what was wanted.
This time the price was set at several times the price of the entire original
vision system, and sales were very good.

With a new commercial partner, we will soon combine vision with a low-
cost precision GPS technique that we have developed. The project will be
rolling again.

Another project with journalist appeal was Robocow—a nimble mobile
robot for training horses for cutting contests.

In some ways, as technology advances the task of exploiting it becomes
harder. The traditional approach to embedding some computing power was
to take a microprocessor chip, add some supporting memory and interfaces,
and then write the software “from the ground up.” The concept of an “operat-
ing system” would be as alien as adding antilock braking to a rollerskate.

But when Webcams can be bought with drivers to interface them via
DirectShow to Windows-based applications, how far up the evolutionary tree
do you have to go to fi nd your computing power? The price of a fully equipped
PC card is today little more than that of an evaluation board for a Motorola
HC12. Are we locked into complicated but popular technology “because it’s
there”? That is certainly the line we have been taking with a deluge of agri-
cultural application opportunities. The data capture is quick and dirty, and
we can concentrate on innovating ways to analyze it.

A project that appears strange—but actually makes good sense—is based
on the ability to discriminate between animal species. When a sheep
approaches a watering place, it is recognized and allowed to pass through a
gate. When a feral pig comes the same way, it is also recognized and allowed
to pass through an adjacent gateway, to another water source.

The difference is that the sheep will be allowed to go on its way after
drinking, while the pig is confi ned until the farmer comes to pay it some
serious attention. The economics of damage by feral pigs and the trade in
feral pork are convincing reasons for funding the project.

The dynamic behavior of small marsupials is another area of interest.
There is a breeding program for an endangered species of sminthopsis. The
problem is that if the lady is not “in the mood,” the animals are apt to kill
each other. By tracking the movement of separated partners in adjoining
cages, we hope to detect in real time when true love can take its course.

Texture analysis is usually a lengthy business, requiring substantial com-
puting effort for correlations. Two applications require a speedy solution. The
fi rst is for the grading of oranges, where the extent of “goose bumps” on the
surface is an indicator of quality.

The second is for the game of football. A speedy analysis of the status of
the grass cover must be made, at least to avoid a lawsuit when an overvalued
player slips on a bare patch and falls on his fundament. But is this really
mechatronics?

6 INTRODUCTION

So, what of the next generation of mechatronic engineers? How do we give
them skill and ability with the essentials, without deluging them with the
entire contents of the textbooks of at least three diverse disciplines? The
Micromouse experience suggests that hands-on experimentation is an essen-
tial ingredient. While learning, software must be “crafted” by the student,
rather than being ladled into the project as a bought-in commodity. The
student must be prepared to deal with hydraulics or electromechanics, treat-
ing them as two sides of the same coin.

After the “bare essentials” whistle-stop tour of mechatronics, some experi-
ments are presented that could whet the appetites of students to study the
more detailed material that follows. “Seat of the pants” engineering will cer-
tainly get you started, but will go only so far.

Mechatronics is special. It is no more a mere mixture of electronics,
mechanics, and computing than a Chateau Latour (or Grange Hermitage)
vintage wine is a mixture of yeast and grape juice.

1.2 WHAT IS AND IS NOT MECHATRONICS?

Long ago, Caryl Capek wrote a book, Rossum’s Universal Robots. It was as
little about robotics as Animal Farm was about agriculture, but the term had
been coined. Science fi ction writers grew fat on the theme, and the idea of
mechanical slave workers was lodged in the mind of the public.

When Devol designed a mechanical manipulator for Engelberger’s fi rm,
Unimation, it was endowed with the term “a robot arm.” As a research topic,
robotics ceased to be about tin men and turned to the articulation of mechani-
cal joints to move a gripper or workpiece to a precise set of coordinates. The
new “three laws of robotics” concerned the Denavit–Hartenberg transforma-
tion matrices, discrete-time control algorithms, and precision sensors.

Robotics is just a narrow subset of mechatronics. It is true that it has all
the ingredients of sensing, actuation, and a quantity of computer-assisted
strategy in between, but with every day the list of mechatronic products
increases. In videorecorders, DVD players, jet airliners, fuel injection motor
engines, advanced sewing machines, and Mars rovers, not to mention all the
gadgetry that surrounds a computer, the jigsaw pieces of mechatronics are
slotted together.

In something as simple as a thermostat, sensing and actuation of the heater
are linked. But the element of computation is missing. It is not mechatronic.
In automatic sliding doors, however, the criterion is not as cut and dried. A
few simple logic circuits are enough to link the passive infrared sensor to
the door motor, but the designer might have found that the alternative of
embedding a microprocessor was in fact simpler to design and cheaper to
construct.

Before 1960, autopilots were capable of automatic landing. Their compu-
tational processes were based on magnetic amplifi ers, circuits using the satu-

ration of a mumetal core with no semiconductor more complicated than a
diode. As the aircraft approached its target, the mode switching from height-
lock to ILS (instrument landing system) radiobeam to fl areout controlled by
a radar altimeter was performed by a clunking Ledex switch, a rotary solenoid
driving something similar to an old radio waveband changer.

This must come close to qualifying as robotics, but lacking any trace of
digital computation, it must fall short of mechatronics. For today’s aircraft,
however, with digital autopilots that can not only guide the aircraft across the
world and land it, but also taxi it to the selected air bridge at the terminal,
there can be no question that it is a mobile robot.

Machines that can roll, walk, climb, and fl y under their own automatic
control have come to share the title of robots, mobile robots. One example of
such a robot is the Micromouse, which will be mentioned several more times
in this book. IEEE Spectrum Magazine and David Christiansen must take
the credit for devising a contest in which small trolleys explore a maze. I would
like to claim personal credit for redefi ning the maze design and rules to give
victory to the “intelligent” mouse, rather than the “dumb wall followers.”

Many early Mice used stepper motors to move and steer them, controlled
by microprocessors of one sort or another. The maze walls were sensed by a
variety of photoelectric devices, although in at least two cases mechanical
“feelers” were used with great success. To navigate through the maze, a map
had to be built up in the microcomputer’s memory. To solve the maze, a
strategy was required. A further aspect of the software was the need to apply
control to keep the mouse straight as it ran through the passageways. So, in
one not-so-simple contest, all the ingredients of mechatronics were brought
together.

The contest runs regularly to this day. Many of the early champions are
still at the forefront, while simplifi ed versions of the contest have been devel-
oped to encourage young entrants. While the experts hone their expertise,
however, the bar has to be set lower and lower for the newcomers. Simply
running through a twisted path with no junctions is a testing problem for most
schools’ entrants.

So, what is the “mechatronic approach”? How would a mechatronics engi-
neer design a set of digital bathroom scales? Would they be based on a strain-
gauge sensor, on the “twang” frequency of a wire tensioned by the user’s
weight, or on some more subtle piece of ingenuity?

When I opened up the machine on my bathroom fl oor, I was disappointed
to discover that the pointer of a conventional mechanical scale had simply
been replaced with a disk with a notched edge. As it rotated under the weight
of the user, an incremental optical encoder counted the notches of the disk
as they went by and displayed the count on a luminous display.

For a manufacturing company with an established market in mechanical
scales, the “pasted on” digital feature makes sense. However a “truly mecha-
tronic” solution would fi nd a tradeoff between digits and mechanical preci-
sion that would simplify the product.

WHAT IS AND IS NOT MECHATRONICS? 7

8 INTRODUCTION

A hairdryer marketed some years ago featured a “bonnet,” coupled by a
hose to the hot-air unit. A plastic knob could be rotated to give continuously
variable temperature control. So, how would you go about designing it? When
the question is put to university classes, it always brings answers featuring
potentiometers, thyristor power controllers, and often a microcomputer.

The product was actually much simpler. The airfl ow was divided into two
paths after the fan. In one path was a heating element, regulated by a simple
thermostat just “downstream,” while the other simply blew cold air. The
ornate knob moved a shutter that closed off one or other fl ow, or allowed a
variable mixture of the two.

Good design can often demand an awareness of how to avoid excessive
technology.

9

2
The Bare Essentials

2.1 ACTUATORS

A mechatronic system must “do” something, even if it is just to move a pointer
or change a display. The industrial robot must have motors with which to
move an end effector, perhaps a gripper, while another system’s output might
concern heaters.

The mechatronic engineer should not be in too much of a hurry to run to
the catalog to choose an electric motor. To the electrical engineer, motors are
a fascinating playground around which to debate the merits and challenges
of axial fl ux, windage losses, rotor resistance, or commutation. The mecha-
tronic engineer is by no means certain that the solution does not instead lie
with something hydraulic or pneumatic.

This section attempts to put a selection of the vast range of actuators into
some sort of perspective.

2.1.1 Choosing a Technology

The fi rst question to ask is: “What must the output do?”
At the bottom end of the list, in terms of power, is the task of displaying

a value on an indicator. Many automobile instrument panels have now been
taken over by liquid crystal displays, probably putting them outside the grasp
of mechatronics, but they are just the tip of the iceberg.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

10 THE BARE ESSENTIALS

For many years the simplest of cheap automobile instruments, such as the
fuel gauge, have been moved by a bimetal strip. Around it is wound some
resistance wire. As current is passed through the wire, the temperature rises
and the bimetal bends to move the pointer. A simple twist compensates for
variation in ambient temperature. This old technology has been given a new
lease on life by the arrival of memory alloys that change their shape with
temperature.

For many applications, this simplicity and robustness is ruled out of ques-
tion by a need for a rapid response. An electromagnetic solution might have
more appeal.

When current fl ows in a conductor within a magnetic fi eld, the conductor
experiences a force. That more or less sums up electric motors! But the devil
is in the detail.

In an electromagnetic indicator, the force is opposed by a spring, so that
the defl ection of the needle increases with the current.

The simplest electromagnetic actuator that can move a load is the solenoid.
When current passes through the solenoid’s winding, it results in a magnetic
fi eld that causes a slug of soft iron to move to close a gap in the magnetic
circuit. This single action might be enough, say, to release a remote-entry door
lock. But other applications demand something more versatile.

2.1.2 DC Motors

You are probably most familiar with the permanent-magnet DC motor, used
in everything from toys to tape recorders. The rotor is wound in such a way
that the electromagnetic force causes the rotor to rotate. If the currents in the
motor’s conductors were constant, the rotor would move to some stable posi-
tion, swing to and fro around it a few times, and then come to rest. But the
current is not allowed to be constant. Long before the stable position is
reached, a commutator breaks the current to that particular coil and energizes
the next one in succession. The motor continues to rotate.

The “old-fashioned” structure of the commutator used curved plates of
copper with brushes, often made of carbon, that rubbed on them. The “brush-
less” DC motor is becoming increasingly common. Here sensors measure the
rotor position, and electronic switches apply the commutation by selecting the
appropriate coils. There is another important difference. Since the magnetic
material usually has more mass than the rotor, in a traditional motor it is the
coils that rotate. In a brushless motor the coils are fi xed and the magnet
rotates.

2.1.3 Stepper Motors

Now let us take away the commutation again. Energize one coil and the rotor
is pulled to a particular position, requiring a fair amount of torque to defl ect
it. Energize another coil and the motor “steps” to another position. In other
words, by selecting coils in sequence, a computer can step the motor an exact
number of increments to a new position—this is a “stepper motor.”

ACTUATORS 11

Think of it in terms of a compass needle being pulled into line by a pair
of coils, arranged north–south and east–west (see Fig. 2.1). Current can be
passed through these coils in either direction, so we might start with both the
NS and EW coils being driven in the “positive” direction, resulting in the
needle pointing northeast. Now if we reverse the drive the NS coil, the needle
will move to point southeast. Reverse the EW coil, and it will rotate to point
southwest. Make the drive to the NS winding positive again, and the needle
moves on to point northwest. Finally reverse the EW drive to be positive and
the needle completes the circle to point northeast once again. You can see an
animation of this at www.essmech.com/2/1/3.htm

In practice, the magnet of a stepper motor has a large number of poles,
and the windings are helped by a similar large number of salient polepieces
(Fig. 2.2) in the soft iron on which they are wound. As a result, the switching
sequence must be repeated 50 times for a “200-step” motor to make one
complete revolution.

N

S

EW

Figure 2.1 Stepper schematic—NSEW.

N

N

N

S

S

S

Figure 2.2 Stepper schematic—polepieces.

12 THE BARE ESSENTIALS

Simple software can command the motor to move to a desired position, so
the stepper motor has great appeal for the amateur robotics builder. But it
has a great number of shortcomings. There is a limit to the torque it can resist
before it “clunks” out of the desired position and rotates to a different stable
location. If a transient of excessive torque causes it to “drop out of step”, then,
without a separate position transducer, the slip goes unnoticed by the proces-
sor and the error remains uncorrected. What is more, this dropout torque
decreases markedly with speed. An attempt to accelerate the motor too
rapidly can be disastrous and the software is made more complex by the need
to ramp the speedup gently.

Of course, there are other ways than the use of a permanent magnet for
producing a magnetic fi eld. More powerful DC motors, such as automobile
starter motors, use current in a fi eld winding to generate the stator’s magnetic
fi eld. Similar motors are not restricted to using direct current. By connecting
the stator and rotor windings in series, the torque will be in the same sense
whether positive or negative voltage is applied across it. The motor can be
driven by either an AC or DC voltage. This is the universal motor (Fig. 2.3),
to be found in vacuum cleaners and a host of other domestic gadgets.

Field Armature

Figure 2.3 Universal motor.

2.1.4 AC Motors

Another family of motors depend on alternating current for their fundamen-
tal mode of operation. They use rotating fi elds. If the stator has two sets of
windings at right angles and if a sine-wave current fl ows in one winding and
a cosine-wave current fl ows in the other, then the result is a magnetic fi eld
that rotates at the supply frequency.

This is illustrated at www.essmech.com/2/1/4.htm.

ACTUATORS 13

From this one simple principle, a host of variations are possible. In one
case, short-circuited coils are wound onto a soft-iron rotor. If the rotor is sta-
tionary, the rotating fi eld induces currents in the rotor coils that in turn propel
the rotor to rotate with the fi eld. So the rotor accelerates, but cannot quite
catch up with the fi eld. If the rotor were to rotate at the supply frequency, it
would experience no relative rate of change of fi eld and no current would be
induced in it.

The rotor “sees” the slip frequency, the amount by which the rotation
falls short of the fi eld rotation. Large industrial motors are designed to give
maximum torque for a few percent of slip, thus improving their effi ciency but
requiring some special provision to get them up to speed (see Fig. 2.4).

Torque

Speed

Figure 2.4 Torque–slip curve.

Induction motors can make useful servomotors. If the sine-wave winding
is powered “at full strength” while the cosine-wave current is of a variable
magnitude, then the rotating component of the fi eld can be varied in strength,
including the possibility of reversing its direction. This variable fi eld servomo-
tor has suffi cient torque to move aircraft control surfaces. Now, however, the
torque–slip characteristic must be modifi ed so that maximum torque is gener-
ated at 100% slip—when the motor is at a standstill.

It is possible to run a two-phase induction motor from a single-phase
supply. One phase is connected across the supply, while the second is ener-
gized via a series capacitor. This capacitor gives the phase shift that is needed
to result in a rotating fi eld. However, many appliances such as water pumps
have a switch to disconnect the capacitor as soon as the motor is “up to
speed,” so that the motor continues running from a single phase alone. It
works as shown in Figure 2.5.

The fi eld from a single phase can be thought of as the result of two fi elds
rotating in opposite directions (see curves in Fig. 2.6). The motor has a
torque–slip characteristic that gives maximum torque for a small slip. Thus
the torque from the fi eld going in the “correct direction” is much greater than
that of the opposite direction, so that the motor continues to rotate effi ciently.

14 THE BARE ESSENTIALS

If a servomotor were designed with an “effi cient” torque–slip curve, it would
be in danger of running away, failing to stop when the control voltage was
removed. But the conventional two-phase induction motor has some simple
uses, as you will see in the section on interfacing.

Large induction motors are wound for three-phase operation, and their
interfacing for control applications, such as in an elevator, presents problems
all of their own.

The rotor of another variation of motor contains no iron and consists
merely of a thin cylinder of copper. It will still experience rotational forces
after the fashion of an induction motor. This is the “drag cup” motor, popular
in servo repeater systems as used in autopilots in the 1960s. Although its
torque was small, its tiny moment of inertia meant that response speeds could
be very rapid.

Soft iron acquires a magnetic moment when in the presence of another
magnetic fi eld, but loses it when the fi eld is removed. A permanent magnet is
made of a “hard” material in which the magnetic moment can be self-
supporting. Somewhere between these extremes is the material used in a

SwitchRotor

Figure 2.5 Motor with starter capacitor and switch.

Torque

Speed

Figure 2.6 Combination of two torque–slip curves.

ACTUATORS 15

hysteresis motor. The rotating fi eld induces a magnetic moment in the rotor
that remains, even as the rotating fi eld advances. The fi eld thus drags the rotor
after it. Even when the rotor has accelerated to rotate in synchronism with
the fi eld, the residual permanent magnetism will keep the hysteresis motor
rotating.

We can double the number of poles on the stator, so that the motor’s basic
speed of rotation is halved. The variations are endless. A motor can be con-
structed without bearings as a pair of rings, to be mounted on opposite sec-
tions of a robot joint. The structure can involve fi elds that are radial, as in a
“conventional” motor, or fi elds that run parallel to the axis of rotation.

2.1.5 Unusual Motors

If you think that axial fi eld motors are rare, rescue a 51–4 -in. fl oppy disk drive
from the junk heap. There is an easily recognized stepper motor for moving
the head in and out, but where is the motor that rotates the fl oppy?

When you remove a plate from the large circuit board, you will see copper
windings “stitched” to the board like the petals of a fl ower (see Fig. 2.7). The
plate that covered it was in fact the magnetic rotor that carries the fl oppy
round with it, while sensors on the board switch the fi elds to control the rota-
tion. This axial fi eld motor is truly “embedded” in the product, rather than
being added as an identifi able component.

Figure 2.7 Windings on fl oppy board.

16 THE BARE ESSENTIALS

A motor can even be “rolled out fl at.” A linear stepper motor has its pole-
pieces side-by-side. It is mounted close to a linear track stacked up from
“slices” of magnetic and nonmagnetic material, along which it steps its way
at considerable speed.

A linear induction motor can be propelled along a conducting or magnetic
plate. This is a popular form of propulsion for hovering or magnetic levitation
trains.

So, the mechatronic designer has much more to worry about than fi nding
a motor in a catalog. Why should the motors be electrical at all? How about
hydraulics and pneumatics?

2.1.6 Hydraulics and Pneumatics

The fundamental principles of these seem to be glaringly obvious. First, you
must construct a cylinder and place a piston in it, maybe resulting in some-
thing not very different from a bicycle pump (see Fig. 2.8). When you pres-
surize the air or oil in one end of the cylinder, the piston will be forced away.
Once again, the details make a simple situation very complicated.

Figure 2.8 Hydraulic/pneumatic cylinder.

There are essential differences between hydraulics and pneumatics. Air is
much more compressible than oil, but has much less inertia. Pneumatics will
therefore have the edge in situations where rapid acceleration is needed, but
where the power is not large. Hydraulics will fl ex its muscles for the heavier
tasks.

But the choice of motor technology cannot be made in isolation. Power
and effi ciency will be just one factor, while ease of interfacing and the control
dynamics will require just as much attention.

2.2 SENSORS

If the range of actuators seemed vast, it does not compare with the gamut of
possibilities offered by sensors. Of course, the fi eld is narrowed down by the
nature of the quantity that is to be measured. Perhaps it is best to list some
of the possibilities.

2.2.1 Position

There is a fundamental need for a feedback signal for position control, but
the choices are numerous.

The “classic” sensor is the potentiometer (Fig. 2.9), where a voltage is
applied across a resistive track and a moving “wiper” picks off a proportion
of the voltage corresponding to its position. The track can be made from a
winding of resistance wire, or a track of conducting plastic or carbon composi-
tion. The motion sensed can be linear or rotary. Prices vary by factors of
hundreds, infl uenced by noise, reliability, and required lifetime.

The plastic potentiometer gives a signal that is not quantized—it varies
smoothly and not in steps. This analog property has many advantages when
the objective is simplicity, but like all analog signals, there is a question of
accuracy and linearity.

Other sensors are “steppy” by nature, where the steps are absolutely
defi ned by the construction of the sensor. One such sensor is the incremental
encoder. Yet again, several technologies offer themselves, but the one most
frequently found is optical.

Think of a sequence of “stripes” (Fig. 2.10) moving between a light source
and a phototransistor. The associated electronics can “see” the difference
between stripe and gap, and can count the stripes as they move past. This
count is presented as the measured position. Now, this is all very well if we
are certain of the direction of movement, but clockwise or anticlockwise
(counterclockwise) movement will give signals that are indistinguishable from
each other. So, how can they be resolved to count up or down?

The answer is to provide a second phototransistor alongside the fi rst to
render the transducer two-phase (see Fig. 2.11). The signals change one after
the other. Now if we give the values 0 or 1 to each of the pair of signals, we
might see the sequence of values 00, 10, 11, 01, 00, and so on for the pair when

Figure 2.9 Potentiometer.

SENSORS 17

18 THE BARE ESSENTIALS

the rotation is clockwise. If it is rotated anticlockwise, however, it would be
00, 01, 11, 10, 00, and so on. Look closely, and you will see an essential dif-
ference, one that will cause a logic circuit or a couple of lines of software no
trouble at all.

Even within optical sensors, there are many choices. The resolution can be
increased to many thousands of “stripes” per revolution by passing two optical
gratings across each other and observing the change in the Moiré pattern. An
even fi ner resolution can result from mixing laser signals to produce interfer-
ence fringes.

Now, this incremental technique seems an ideal solution—until you realize
that it tells you only the change in position, not the absolute position at switch-
on time. To fi nd the initial position, one solution is to run the system to some
hard stop and reset the counter there.

A more subtle technique was used in the Unimation Puma robot. As well
as the incremental stripes, of which there were around a hundred per revolu-
tion of the geared motor, an extra stripe was added so that one specifi c point
in the revolution could be identifi ed. At startup, the motor rotated slowly until
this stripe was detected. This still left tens of possibilities for the arm position,

Figure 2.10 Two optical sensors, with stripes.

Clockwise Anticlockwise

Figure 2.11 Waveforms traveling forward and reverse.

as the motor was geared to rotate many times to move the arm from one
extreme to the other. But in addition to the incremental transducer, the arm
carried a potentiometer. Although the potentiometer might not have the
accuracy required for providing the precision demanded of the robot, it was
certainly good enough to discriminate between whole revolutions.

The concept of “coarse–fi ne” measurement is a philosophy in itself!
Of course, there is the alternative possibility of reading 10 binary signals

at once, giving a 10-bit number with an “at a glance” resolution of 0.1%.
However, the 10 tracks to give these signals must be very accurately aligned,
even when the output is arranged as in rotary Gray code (Fig. 2.12). In Gray
code, the fi rst stripe is a half-revolution sector. The next is also a half-revolu-
tion sector, displaced so that the two outputs divides the range into four
quadrants. Then each successive track has double the number of stripes, with
edges splitting in half the regions defi ned so far. The last has 512 fi ne stripes.
These devices are not cheap!

Other sensors can be based on magnetic “Hall effect” semiconductors of
the switching variety for locating an endstop or for counting teeth in a mag-
netic gear or track.

Alternatively, analog Hall effect sensors (see example in Fig. 2.13) can pick
off the sine and cosine of a rotation angle, by detecting the component of a
magnetic fi eld perpendicular to their sensing plane. These are “noncontact”
and have high reliability.

A chip is available from Phillips, the KMZ43T (the superseded version
was the KMZ41), which gives sine and cosine outputs depending on the angle
of the fi eld. Provided it is strong enough, they are independent of its strength.
The output gives two electrical cycles per revolution of the magnet.

A noncontact sensor that perhaps does not entirely deserve its popularity
is the linear variable differential transformer (LVDT) (Fig. 2.14). A coil is

Figure 2.12 Rotary Gray code.

SENSORS 19

20 THE BARE ESSENTIALS

energized with a high-frequency signal, while another coil wound over it and
sliding along it picks off a varying voltage by induction. The circuitry includes
oscillator and detector, and the result is an output voltage that is proportional
to the displacement.

There is a common displacement transducer that gives a resolution of a
fraction of a millimeter in two dimensions, yet costs only $20 or less. It is used
in the computer “mouse” and is based on the optical transducer described
above. An alternative “optical” mouse has a simple image chip that “looks”
at marks on the desk underneath the mouse and works out the movement by
correlation.

If you widen your scope, the examples keep coming. GPS receivers must
be included. By skillful combination of the carrier-phase measurements from
two receivers, displacements can be tracked to subcentimeter accuracy. Dis-
tances can be measured with radar, with ultrasonic “estate-agent-grade” room
measuring instruments or with the Polaroid sensors used in early autofocus

N
S

N
S

Hall effect
sensor (e.g.
UGN3504)

Figure 2.13 “Crossed” Hall effect angle sensor.

High-
frequency
drive

Output

Movement

Phase-

sensitive

detector

Figure 2.14 LVDT.

cameras. The time of fl ight of laser pulses is used in another family of distance
meters and in the Sick sensor.

2.2.2 Velocity

The response of most position controllers can be made more “crisp” by the
addition of a velocity signal in the feedback. Now this can of course be derived
by computation from a position sensor, although this “secondhand” signal is
more sluggish than a direct measurement.

Any small permanent-magnet DC motor will act as a generator. When
coupled to the shaft of a servomotor, it will give a voltage proportional to the
velocity of rotation. The voltage will be somewhat “lumpy” as a result of the
commutation, but will still be a great help to stability. The result is known as
a “tacho” (tachometer) signal.

In an agricultural tractor, it is common to measure speed over the ground
by radar. The unit is mounted below the body and detects the Doppler shift
of a radar pulse directed obliquely at the ground.

Another form of velocity can be important for navigation: angular velocity.
There are many forms of rate gyroscope to measure it. In classic form, these
contain an inertial mass that spins at high speed. When there is a rotation
about an axis perpendicular to that of the spin, it will result in substantial
precession forces that are easy to measure. These rate gyroscopes have been
an essential component of autopilots from early times.

More recent devices use a miniature “tuning fork” and have no rotating
parts. As the fork rotates about its long axis, the to-and-fro vibration of the
tines will gain a side-to-side component that can be measured. A similar
device uses vibrations in a ring.

Yet another more recent device is based on the velocity of light in a coil
of optical fi ber.

2.2.3 Acceleration

A transducer for linear acceleration can take the form of a tilt sensor, measur-
ing the displacement of a pendulum or of a mass mounted on leaf springs.
This is really a secondhand measurement, where the acceleration is deduced
from a position measurement of the movement of the pendulum. However, it
is different from inferring the acceleration from measuring the position of the
accelerating vehicle and computing differences.

Other sensors are designed to measure high-frequency vibrations. One
range of commercial sensors is a close relative of a microphone, using either
the change in capacitance between two moving plates or a piezoelectric
voltage as a small mass resists the disturbing acceleration.

In a similar way, rotational acceleration can be deduced from the torque
required to rotate a miniature “dumbbell,” or from two linear accelerometers
positioned some distance apart.

SENSORS 21

22 THE BARE ESSENTIALS

2.3 SENSORS FOR VISION

Optical sensing systems are many and various, with a variety of resolutions
in both position and intensity. In order of increasing complexity, they can be
ranked as follows.

2.3.1 Single Point, Binary

At the bottom of the ladder is a single phototransistor. When light falls on a
phototransistor, it allows current to fl ow through it to cause a change in the
output voltage.

A “pair” consisting of a single light-emitting diode (LED) and a single
phototransistor can be used in a variety of ways. As a refl ective opto switch
they can detect a dark mark on a light background or vice versa. To obtain
any kind of picture the sensor would have to be scanned mechanically in both
directions.

As a slotted opto switch, the LED and the phototransistor are mounted to
face each other and indicate when there is an obstruction in the slot. There
are no real vision applications of this confi guration, but it makes a useful
detector for motion measurement (see example confi guration in Fig. 2.15).
Two such sensors monitor the movement in each axis of a conventional com-
puter mouse.

Figure 2.15 Slotted opto switch.

A simple “beambreak sensor” can be very versatile. It can calibrate the
motion of a toolpiece moved by a robot, check the length of a drill, or verify
that a hole has been punched.

2.3.2 Linescan Devices

A linescan sensor is used in every fax (facsimile) machine. The image of the
page is focused onto the device, which “sees” a single scanline across the page.
As the page is fed through the machine, the image is built up, line by line.
This sensor could have around 2000 pixels, individual sensing elements, and
will probably use the “bucket brigade” principle.

When light falls on the sensitive silicon sensor, a current fl ows that is pro-
portional to the brightness. In the single phototransistor sensor the current
is measured directly. In most camera systems, the current builds up a
charge on a small embedded capacitor—part of the device. This allows the
device to be much more sensitive, provided we are prepared to allow a little
time to pass so that the charge can build up before we read and reset the
voltage.

In a bucket-brigade device, we must apply a pulse sequence that shunts all
the charges simultaneously into a second row of capacitors. Then a second
sequence of pulses causes the charges to march along the second line of
capacitors—living up to the title “bucket brigade.” At the end of the chain, a
sequence of voltages is seen, representing the light integrated by cell1, cell2,
cell3, . . . and so on in turn. This kind of sensor needs an assortment of clock
pulses to be accurately controlled in both timing and voltage. Fortunately,
there are some other devices that are much easier to use.

The TSL214 and its successors use the same principle, in that the photo-
electric current of each of their sensors is integrated in a capacitor. However,
the method of reading the charge is much more robust and tolerant of timing
and waveform variations. Each time a clock waveform rises and falls, a single
“1” is moved along a shift-register. As the “1” reaches each cell, its capacitor
charge is transferred to the output amplifi er, so that a corresponding voltage
appears on the output pin. One more input is needed, to insert the single “1”
at the beginning of the sequence.

The chip runs from a single 5-V supply, and only two output bits from a
microcomputer are needed to control it. It can easily be attached to the
printer port of a PC, and the pulses can be generated by simple software. That
leaves only the problem of inputting the brightness data to the PC.

An obvious option is to use an analog-to-digital converter (ADC)—perhaps
an 8-bit device that can discriminate 256 levels of brightness. In many appli-
cations, though, the brightness needs to be compared only against a fi xed
level.

It is much easier in this case to perform the analog comparison in a single
comparator and input a single bit per pixel. The method is a little less crude

SENSORS FOR VISION 23

24 THE BARE ESSENTIALS

than it appears, since the sensitivity can be varied from within the software.
By allowing more time to elapse between scans, a higher voltage will be
obtained for a given brightness.

But we are already allowing this brief introduction to be complicated by
considerations of interfacing.

2.3.3 Framescan Devices

These devices are built around a videocamera similar in principle to that of
a camcorder. Some texts still refer to the vacuum-tube cameras that are now
part of TV history. The “useful” technology is at present centered on a pho-
tosensitive silicon chip.

An array of photosensitive sites on the chip allow charge to build up on
capacitors (also part of the chip) at a rate proportional to the light falling on
each pixel, just as in the case of the linescan camera. By a variety of bucket-
brigade operations, these charges are sampled in turn and appear at an output
pin essentially in the form of a raster TV signal.

There is another, simpler form of camera termed a “Webcam.” It usually
has fewer pixels than does a videorecorder camera, typically 640 × 480. Its
virtues are that it is cheap and that it comes with a complete interface to a
personal computer.

A color TV display has a fi ne array of red, green, and blue phosphor dots,
which have the combined effect of creating a full-color image. More expensive
cameras use three chips, one to receive each primary color. The cheaper ver-
sions, including Webcams, use a single chip.

By printing a tinted pattern on the face of the camera chip, the manufac-
turers can produce an output that can be converted into a full-color picture,
in exchange for some loss of resolution. Groups of 4 pixels are arranged with
2 of green and 1 each of red and blue (e.g., see Fig. 2.16). Since the eye resolves
color with much less sharpness than it does brightness, the lower resolution
of the color data is not a problem.

R G
G B
R G
G B
R G
G B
R G
G B

R G
G B
R G
G B
R G
G B
R G
G B

R G
G B
R G
G B
R G
G B
R G
G B

R G
G B
R G
G B
R G
G B
R G
G B

R G
G B
R G
G B
R G
G B
R G
G B

R G
G B
R G
G B
R G
G B
R G
G B

Figure 2.16 Red-green-green-blue (RGGB) array.

2.4 THE COMPUTER

Computers come in all shapes and sizes. Some are designed to be embedded
in mechatronic products, while others are virtually complete products in
themselves.

But the sophisticated PC and the simplest microprocessors have the same
principles at heart. The essential components are memory and a processor
consisting of an arithmetic–logic unit and a control unit. Bytes are “fetched”
from the memory and treated either as data, numbers to be crunched, or
instructions to be executed. The “cunning” of the computer (let us not yet
call it “intelligence”) lies in the ability to choose a different sequence order
of instructions to obey, according to the value of the data.

So at rock bottom the program consists of a list of bytes to be executed.
Switch on your Windows PC, click on start and run, and type “debug.” Then,
when a black panel appears, type

d f000:0

followed by clicking on <enter>
An array of two-digit numbers will appear, where the digits include the

letters A–F. If the numbers are all zero, try inputting a different number to
look at a different part of memory. When you have found something that looks
interesting, try

u f000:0

or whatever number you have chosen.
Now a cryptic list of codes will appear on the screen, such as (although not

the same as)

TEST CL,3F
JZ 0020
CMP AH,02
JZ 0025

You are looking at an example of assembly code.
The jumble of numbers was a dump of that part of memory, represented

as hexadecimal bytes. Believe it or not, this is the most powerful sort of code.
By planting the correct bytes, you can cause the computer to execute any
instruction of which it is capable.

Since the very early days of computing, programmers have found it much
easier to remember mnemonics than the raw codes. So CMP stands for
“compare,” representing hexadecimal 80 (in some cases).

A program called an “assembler” turns the lines of code into the corre-
sponding bytes. It is obviously more productive for a programmer to write

THE COMPUTER 25

26 THE BARE ESSENTIALS

code using these mnemonics than to write hexadecimal bytes, but if there is
an instruction that the assembler does not “know about,” it is impossible to
use it. (If you want to be adventurous, type ? to see a list of instructions
including an assembler, or else type q to quit and return to normal.)

For more substantial programming, the compiler is the method of choice.
Code does not now correspond exactly to the machine code bytes, but instead
represents the mathematical task being attempted. This is where the PC and
the simple microprocessor start to part company.

Generations of PC software have become more and more massive, until
programs of many megabytes are common. Embedded mechatronic tasks can
often be performed by software consisting of only a few thousand bytes, so
writing in assembly language is not out of the question. Even though C com-
pilers are available for most microprocessors, the compactness and effi ciency
of code written in assembler can often be worth the extra effort.

On the other hand, there are very few embeddable microprocessors
on which you would want to run the assembler or compiler software to
convert your code into bytes. Instead, you will run a cross-compiler or
cross-assembler on a PC to generate bytes that you will download to the
microcomputer.

For your programming efforts, you need the home comforts of a keyboard,
a mouse, and a screen, plus a disk on which to save the results. The embedded
processor is unlikely to have any of these.

There is an alternative to downloading the code bytes to an embedded
computer. They can be sent off to the “chip foundry” to be mask-
programmed into the chip itself. Such chips might cost only a few cents
each—but they must be purchased in batches of 10,000!

As I have mentioned, my fi rst embedded computer product, many years
ago, used the TMS1000, the chip that powered the very earliest pocket cal-
culators. Its data memory consisted of just sixty-four 4-bit “nibbles”—a nibble
is just half a byte. The entire program memory held just over 1000 instruc-
tions. Yet this chip had to function as the heart of a cooker clock, counting
mains cycles to calculate elapsed time, switching the oven on and off in
response to the set cooking time and ready time. It had to show each function
on a vacuum fl uorescent display and to respond to button presses by the user.
It had to detect option switches to choose between 50- and 60-Hz mains
frequency and between 12-h and 24-h displays. Would you not call that
mechatronics?

There was not much fundamental difference between processors of the
next generation. You might fi nd the 6502 embedded in a simple controller or
else at the heart of an early version of the personal computer such as the BBC
Micro or the Apple II. Yet these machines could function as word processors
and handle spreadsheets and databases at speeds that seemed hardly slower
than those of the modern PC.

Over the years, the 16-bit processor took over the personal computer
role, later being outstripped by 32-bit machines and more. Computing

power increased by a factor of a 1000, yet software seemed to run no
faster.

Most of the power was soaked up by embellishments of the graphics and
by an operating system that tried to give the illusion of performing a thousand
tasks at the same time. Microsoft realized that for every engineer who needed
a machine for computer-aided design, there were a hundred youngsters who
wanted a machine on which to play videogames. The Windows operating
system has leaned more and more toward providing instant gratifi cation as a
music player, a Web-surfi ng machine, and as a digital television.

It’s not all bad.
The move to multimedia has opened up the way to powerful videoprocess-

ing tools. Streams of Webcam images can be captured, dissected with DirectX
routines, and analyzed to extract their data. So there are applications where
it is preferable to embed an entire PC than to use something simpler. Remem-
ber that the “guts” of a PC, minus disk, display, and keyboard, can be pur-
chased as a single board for a very few hundred dollars. A Webcam interfaced
to a computer board to process the signal will cost a small fraction of the
price of a Pulnix camera alone.

2.5 INTERFACE ELECTRONICS FOR OUTPUT

Almost without exception, the task of getting from a computer’s binary output
to physical reality will involve responding to a signal that lies between 0 and
5 V. The actual range of output might be only from 0.5 to 3.5 V, and the circuit
that it drives must not draw or source a current of more than 1 mA or so.

Something is needed to amplify this signal before we try to use it for
moving a motor—or even lighting an LED.

For small signals, the Darlington driver has been popular for many years.
It amplifi es the computer output of a few milliamperes to 0.5 A, enough to
drive a small relay or a simple stepper motor. A popular single chip contains
eight such drivers, so that 8 output bits of a port such as the printer port could
control two stepper motors.

2.5.1 Transistors

The theory of transistors can be ornamented with hybrid-pi parameters and
matrices, but the essential knowledge for using them is much simpler. Let us
start with the bipolar or junction transistor. This has three connections, a
collector, a base, and an emitter. For driving a relay coil, you might connect
a transistor as shown in Figure 2.17.

The emitter is connected to ground, the supply is connected to one end of
the coil, while the other side of the coil is connected to the collector. As it
stands, no current will fl ow and the coil will be off.

INTERFACE ELECTRONICS FOR OUTPUT 27

28 THE BARE ESSENTIALS

Now apply some current to the base, to fl ow through the transistor to the
emitter. For every milliampere that is applied, the transistor will allow 100 mA
to fl ow from the collector to the emitter. If it takes 500 mA to turn the relay
coil on, we need supply only 5 mA to the base.

Of course, the factor is not exactly 100 for every transistor, but that is a
ballpark fi gure. The actual fi gure is the gain of the transistor, defi ned by its
parameter beta.

Not only do we get the current gain of this factor; we get a voltage gain as
well. The current entering the base is resisted by a voltage of around 0.7 V.
The voltage on the collector for some transistors can be hundreds of volts,
but typically you might use 12 or 24 V to drive your relay or stepper motor.

0v

Logic
output

12v

Collector

Emitter

Base

Figure 2.17 Transistor and coil, with electrodes labeled.

Figure 2.18 Darlington driver transistor.

So, if the task can be done with such a simple transistor, why do we bother
to use a pair of transistors connected as a Darlington driver (Fig. 2.18)? We
must look at the power applied to both the coil and the transistor. Consider

a power supply of 12 V and a 24 Ω coil that will take 0.5 A when switched
fully on.

When the transistor is off, there is no current and no dissipation. There
will be 12 V between collector and emitter of the transistor. When the transis-
tor allows 100 mA to fl ow, the voltage across the coil will be 24 × 0.1 = 2.4 V.
That will leave 9.6 V across the transistor. With 100 mA passing through it,
the dissipation in the transistor would be 9.6 × 0.1 = 0.96 W.

When the transistor allows 250 mA to pass, the voltages across coil and
transistor will each be 6 V. Each will dissipate 1.5 W. Overheating of the tran-
sistor could certainly be a problem. But when the transistor allows the full
500 mA to fl ow, the voltage on the collector will have dropped to zero and
the transistor dissipation will again be zero. To avoid overheating the transis-
tor, we must be sure that it is saturated, that we are supplying enough current
to the base to pass all the collector current available.

So, in the Darlington confi guration, the emitter of the fi rst transistor is
connected to the base of the second, while both collectors are connected
together. The base current of the second transistor is (1 + beta) times the
current applied to the fi rst, so the output current is some 10,000 times the
input current—until the collector voltage has fallen too low to supply that
much current to the second base. We can be sure that the driver will saturate
for a very small input current.

But there are some transistors that can control their output current for no
input current at all! These are fi eld effect transistors (FETs). There are pow-
erful ones known as metal oxide semiconductor FETs (MOSFETs). Once
again, the mechatronic engineer need not be concerned with the physics that
makes the transistor work, just with the details and pitfalls of using it.

The three connections are now known by entirely different names, drain,
source, and gate, but conceptually we can drop the device into the same sce-
nario as the former junction or bipolar transistor.

INTERFACE ELECTRONICS FOR OUTPUT 29

0v

Logic
output

12v

Drain

Source

Gate

Figure 2.19 FET driving a coil.

30 THE BARE ESSENTIALS

Connect the source to ground and the relay coil to the drain, and we are
ready to control the current with the gate. The essential difference is that
when we apply 5 V to the gate, no gate current fl ows at all! Meanwhile the
drain has allowed all the available coil current to fl ow through the FET to
ground, switching the relay coil fully on (see Fig. 2.19).

These devices make interfacing seem all too easy! They have another
property that makes us spoiled for choice. Both bipolar transistors and FETs
are available in complementary forms. N-channel FETs and NPN transistors
are used with a positive voltage on the drain or collector and are turned on
with a positive gate voltage or a positive base current. P-channel FETs and
PNP transistors take a negative voltage on the drain or collector, while they
are turned on with a negative gate voltage or base current.

There are several pitfalls to avoid. When a transistor or FET is switched
from off to on states, there is a brief burst of dissipation because the output
voltage does not drop instantaneously. When it turns off, there is another
burst of dissipation that can last somewhat longer. In general, this is not
serious. If the controlling computer switches the drive on and off repeatedly
at high speed, however, dissipation can become a problem.

A second problem can result from the inductance of the load, whether it
is a coil or motor winding. As the current is turned off, there is a spike of
voltage in a direction that tries to keep the current fl owing. The use of a diode
across the coil will avoid this voltage, but the current in the coil will fall more
gradually.

So far we have considered simple on/off switching, but in the case of a DC
motor we usually want to reverse the direction of the current in the motor.
For that, a convenient solution is the H-bridge.

2.5.2 The H-Bridge

If we connect one end of the motor to ground, we would have to provide
current from both a positive and negative supply to ensure two-way control
of the motor. Instead, we can make do with a single supply if we can switch
the connection of either end of the motor.

This results in a circuit in the form of an H, with the motor representing
the crossbar and with two transistors in each of the “uprights”: A and B in
one and C and D in the other, as shown in Figure 2.20.

If transistors A and D are turned on, the motor will be driven one way. If,
instead, B and C are turned on, the motor will be driven in the reverse direc-
tion. If A and B or C and D are turned on together, however, it will mean
instant death for the transistors. Much of the detail of any H-bridge circuit
(see example confi guration in Fig. 2.21) will be there to prevent this from
happening.

As with so many electronic circuits, the entire device can be purchased
“on a chip” for a very few dollars. The L298 from ST Microelectronics
(http://www.st.com, see also http://www.learn-c.com/l298.pdf) contains two

H-bridge circuits and will drive small motors with ease. For larger loads,
however, you might need to design and build a more specialized circuit.

2.5.3 The Solid-State Relay

Another useful on-a-chip device is the solid-state relay. It contains a light-
emitting diode and a photosensitive triac, with the result that a single output
bit of the computer can switch an AC device on or off. The LED provides
complete electrical isolation between the computer and the AC circuit.

Figure 2.22 shows an example in which a two-phase induction motor can
be driven forward or in reverse. It was used with great success to automate
the operation of the valves of a pilot sewage plant! Time has to be allowed
for the motor to stop before reversing it, but the control was very leisurely.

B D

CA

Motor

+12v

0v

Figure 2.20 H-bridge.

BUZ271BUZ271

BUK553BUK553

22K

22K22K

22K

4.7K4.7K

4.7K4.7K

Motor

2N3704 2N3704

Figure 2.21 H-bridge circuit.

INTERFACE ELECTRONICS FOR OUTPUT 31

32 THE BARE ESSENTIALS

Although undesirable, switching both drives on at the same time need not be
disastrous.

2.6 INTERFACE ELECTRONICS FOR INPUT

We see that, in general, we can apply our control via one or more computer
output bits. If we prefer a gradual change in drive, rather than a bang-bang
on/off control, we can often use mark–space output. Instead of the output bit
being on or off continuously, it is switched on for an interval that we can vary
by software. The dynamics of the system being controlled will smooth this
into a proportional signal.

For simple inputs, we can read logic values from input pins, both on the
simplest of embedded microcontrollers and on a PC used as a controller.

Reading analog sensor values into the computer is a different matter. Now
we can have a continuously varying voltage, such as a tachometer or potentiom-
eter output, that we want the computer to be able to read to considerable preci-
sion. We need some means to convert this analogue signal to digital form.

2.6.1 Simple Inputs

Perhaps our inputs are merely logic signals. We can then arrange for them to
pull one of our logic inputs to ground, maybe using a transistor to avoid apply-
ing the signal directly to a computer pin. If we are particularly concerned
about the computer’s safety, we can use an opto isolator (Fig. 2.23). The
package, usually containing four channels or more, has a LED activated by
the input signal and a phototransistor that conducts when the LED is lit. In
this way, there is no electrical connection between the computer and the
sensor circuit.

SSR SSR

250v a.c.

0v

Figure 2.22 Induction motor with two solid-state relays.

The printer port of the PC, in addition to its eight output data lines, has
fi ve logic inputs. Indeed, a single output command can also convert those
eight output lines to inputs.

2.6.2 The Analog-to-Digital Converter

For reading an analog sensor, we need something more.
Analog-to-digital converters (ADCs) come in a variety of forms, from the

very simple circuit that reads the movement of a game joystick to sophisti-
cated systems that can “grab” waveforms at video speeds and above and pack
the data into a block of memory.

The vast choice is one of the problems that beset the mechatronics system
designer.

At the simplest level, a ramping voltage can be compared against the signal
to be measured. The resulting number is obtained from a counter that mea-
sures the time taken for the ramp to reach the signal voltage. It is simple, but
it is slow if any sort of precision is desired. It can be constructed from a few
dollars’ worth of components to connect to the printer port, if no other ADC
can be found. A more detailed design is given in Section 5.3.5, together with
simple software needed to drive it.

Many converters are built around a digital-to-analog converter (DAC), the
counterpart of the ADC, that converts a number to an analog output. With this,
it is possible to use a binary search method, termed successive approximation.

Suppose that the input can be in a range of 0–8 V and that the actual value
is 6.5 V. First, the DAC output is set to 4 V, the halfway point, and a compara-
tor circuit gives the answer to the question “Bigger or smaller?” As 6.5 V is
bigger, so the next DAC value is 6 V, three-quarters or 75% of the maximum.
The answer is still “bigger,” so the next ADC value is 7 V, dividing the 6–8 V
range in half. Now the answer is “smaller.”

The sequence “bigger–bigger–smaller” becomes a binary number 110
that defi nes the value we are looking for. By successively dividing the range
to search in half, a precision of 1 part in 4000 can be gained from just 12
tests.

Figure 2.23 Opto isolator.

INTERFACE ELECTRONICS FOR INPUT 33

34 THE BARE ESSENTIALS

In general, it is not necessary to know these details. A circuit deals with
all the logic operations and presents its answer to the computer.

Many ADCs have multiplexers that allow us to select between a number
of input channels. So we must start our software operation by outputting the
desired channel number. This might also tell the device to start the conver-
sion, or else we must issue a specifi c command. When the answer is ready,
the status of an input bit will change and we can read the data. However this
might not be as simple as it sounds.

If the ADC gives a 12-bit result, precise to 1 part in 4000, and if our input
is an 8-bit byte, we have to fi nd a way to read the answer in two parts and to
combine these together. Rather than go into details here, see the code exam-
ples in Chapter 3.

For very high-speed data acquisition, there is the fl ash converter, which
relies on brute strength and a large number of comparators to give an answer
in a small fraction of a microsecond, so that video signals can be encoded.

Commercial interface cards are becoming more and more complicated—
and more expensive, too. They could be very simple, indeed, containing little
more than a single-chip ADC that can be purchased with 16 input channels
for under $5. Instead, they often contain fi rst-in fi rst-out (FIFO) buffer-
ing for 1000 samples or offer conversion rates of many megasamples per
second.

The ADCs that could be purchased in the late 1990s were simple and ideal
for student interfacing, requiring no more than a dozen lines of code to drive
them. There has been a more recent trend for cards to hide behind a megabyte
of driver software and to expect the user to depend on some software envi-
ronment such as Simulink. Nevertheless, a close look at the manual will reveal
that they have the same essential structure.

It is unfortunate that the ADCs of the “sound card” cannot easily be
exploited for online control. Found in just about every PC, they are designed
to digitize the two channels of stereo audio at 44 kHz. However, the audio
signals are AC-coupled, meaning that steady voltages are lost.

Nevertheless, for laboratory experiments there is an alternative. The simple
chip, the MCP3204 from Microchip Technology Inc., provides four channels
of 12-bit ADC conversion for a few dollars. It communicates serially, in a way
that can be connected directly to the parallel port of a PC with no other
components whatsoever. It is described fully in Chapter 5, Section 5.3.4.

For another alternative, it is no great task to attach an embeddable micro-
processor such as a PIC chip or the Motorola HC12 to the serial port of a PC.
The tasks of ADC and control outputs can then be delegated to the micro-
controller, at the cost of some slight delay in the data communication. Indeed,
the entire control task can be performed by the microcontroller, but for soft-
ware development or laboratory data logging, the home comforts of the PC
remain very attractive.

Mark Phythian has designed just such a PIC-based ADC 4-bit output as
well. Full details of the circuit and software are given in Section 11.3.1.

2.6.3 Other Inputs

In the case of a PC, we can, of course, use the computer’s more general inputs
for sensor data. The older serial computer mouse connects to a COM port
that receives signals encoded in ASCII format. Inside the mouse, a chip does
all the necessary decoding and analysis of the sensors that detect its move-
ment and sends trains of 5 bytes at 1200 Hz to the serial port of the computer.
Other versions of the mouse can be connected to a PS2 or USB port, but the
principle is the same. The mouse chip does the hard work and sends processed
data to the computer.

By reading and interpreting the mouse codes directly, we can bypass the
acceleration that would prevent us from using them for absolute displacement
measurement. For a few dollars, we have two channels of position sensor with
resolutions of 0.1 mm.

Once we have delegated tasks to other devices, the choices become even
more bewildering. Communication systems such as CANBUS are available
at chip level and allow us to connect a whole network of devices together. We
can use these devices as autonomous agents. We should not rule out Ethernet
and other general networking systems, where protocols such as TCP/IP can
allow devices to call each other up with all the ease of browsing internet
pages.

2.6.4 Signal Conditioning and the Operational Amplifi er

We may have a signal that is not suitable for connection to an ADC, possibly
because the voltage is too small. The operational amplifi er (Fig. 2.24) comes
to the rescue.

The design of a linear transistor amplifi er can be a tricky business, with
the need to provide the correct bias currents and to match the gains of tran-
sistors to minimize the drift effects of changing temperatures. Fortunately,
the makers of integrated circuits addressed this problem many decades ago.
The operational amplifi er sells for a few cents and can be confi gured to
perform a wide range of tasks.

Apart from two power supply connections, in essence it has just three ter-
minals: the output, the inverting input, and the noninverting input. It can be
described by just one equation

Vout

V+

V–

Figure 2.24 Schematic representation of an operational amplifi er.

INTERFACE ELECTRONICS FOR INPUT 35

36 THE BARE ESSENTIALS

V A V Vout = −()+ −

where A is a very large number, typically 100,000. Some earlier designs had
additional connections for frequency compensation, but such considerations
are unnecessary now except for unusual applications.

It is amazing that such a straightforward device can come in so many vari-
eties. Some have more powerful output, some have exceptionally small drift,
while others have an extended frequency response or rapid “slew rate.”

A feature to look for is the ability to work between supply rails of 0 and
5 V (many are at their best with +/− 15 V) with an output voltage that can
swing rail to rail.

Circuit design techniques are given in Chapter 5.

2.7 PRAGMATIC CONTROL

Control theory can be a mathematician’s delight, blending calculus of varia-
tions and the two-endpoint problem with all things fuzzy, neural, genetic,
chaotic, and catastrophic, with a generous helping of complex variables and
matrices thrown in. In practice, the essence of designing a controller is an
understanding of the dynamic behavior of the system to be controlled.

2.7.1 The PID Controller

The three terms in the three-term or “PID” controller are proportional,
integral, and derivative. Over the decades its principles have been applied,
starting with mechanical contraptions with ball-and-plate integrators or pneu-
matic devices worked by air power, all the way to the latest of the Program-
mable Logic Controllers sold as a universal cure for control problems.

We must start with the fundamental concept of feedback. First consider a
system without it. The temperature of a directly heated bathroom shower
could be controlled by a simple power controller wired to its electric heater.
As the power is increased, the fl owing water gets hotter. The knob of the
power controller could be calibrated in degrees and the job would be done.
At the mark on the knob labeled 45°C, let us suppose that 50% of full power
is applied to give the desired temperature.

But what happens when a tap is turned on in the kitchen? The fl ow decreases
by half while the same power is applied. The shower user lets out a scalded
yelp. The temperature has risen to 70°C, as we will soon see.

Instead of relying on “open loop” control, we would like to measure the
output temperature and adjust the power accordingly. This is feedback, and
if we make the power proportional to the error, it is proportional feedback.

So now let us make the heater power proportional to the difference between
the measured temperature and the voltage that is now given by the setting
knob:

• Suppose that full power gives a rise in temperature of 50°C, so that each
1% increase in power will give us a rise of 0.5°C.

• Suppose also that the cold-water supply is at 20°C.
• Suppose that the target setting is at 45°C.
• Suppose that the gain, the factor by which we multiply the error to get

the power setting, is G percent heating per degree of error.

Then, if the output temperature is T degrees, the percentage of power applied
will be

45 −()T G

resulting in an output temperature

20 0 5 45+ −(). T G

Now we can equate this to the temperature T, to get

T T G= + −()20 0 5 45.

which we can solve to get

T G G= +() +()20 0 5 45 1 0 5. .

If G = 2, this gives an output temperature of (20 + 45)/2 or 32.5°C, a long
way below the target. If G = 20, we get (20 + 450)/11 or 42.8°C, much
closer.

But to see the real advantage of feedback, consider the effect of halving
the fl ow. Now at half-fl ow, full power gives 100°C temperature rise. So if we
relied on open-loop control applying half-power, we would get an output
temperature of 70°C.

With closed-loop control and G = 2 we would get (20 + 90)/3 = 36.7°C.
Turning on the kitchen tap has caused an increase of 4.2°C, which is much
safer.

With G = 20, we get (20 + 900)/21 = 43.8°C, a jump of only one
degree.

So, feedback can greatly reduce the effect of a disturbance, and as the
feedback gain is increased, the error away from the target gets smaller.

Why not make the gain infi nite? The infi nite-gain controller can take the
form of a simple thermostat switch that cuts the power as the temperature
rises above 45°C. As the heater starts to cool, the temperature drops below
44°C, say, at which the system switches the power on again.

We could complain that the temperature is oscillating as the switch opens
and closes in a limit cycle, but the one-degree variation is probably quite

PRAGMATIC CONTROL 37

38 THE BARE ESSENTIALS

acceptable. Indeed, we could say with some justifi cation that at least 90%
of all control systems are unstable and oscillate, since that is probably the
proportion of thermostats and similar controllers in everyday use.

Infi nite gain is an option in this system, where the temperature can be
measured very close to the heater, but there are many more systems where it
is not. These may require a “smooth” output. Perhaps the necessary sensor
signals with “immediate response” are not available. For numerous reasons,
we may have to use more ingenuity in the controller.

The proportional feedback gain G accounts for the P in PID, but what of
the other letters? If we were forced to measure the shower temperature
further downstream, the oscillation might become rather serious. Oscillation
in the shower temperature can often occur with human control. If the tem-
perature is low, we increase the power. But the water, now too hot, fl ows
through the hose and does not hit our skin sensor until a second or two later.
When it does, we cut the power and suffer the further second of overly hot
water, only to be hit by a chilling blast.

The solution is to reduce the size of our adjustment and inch the setting
slowly up, waiting for the effect before making each new adjustment.

Consider an automatic temperature control system that oscillates unless
we reduce the gain considerably, say, to 2 or below. Now the temperature error
is larger than we can accept. How do we correct it? We can “integrate” the
error, to get a term I that increases with time and with the error—this is
integral feedback.

If we add this to the power drive, we will have an output temperature

20 0 5 45+ −() +(). T G I

or after solving with G = 2

T G I G
I

= + +() +()
= + +()

20 0 5 45 0 5 1 0 5
20 45 0 5 2

. . .
. *

The temperature starts at fi rst to settle at 32.5°C, but all the time it is below
the target of 45°C, the value of I will increase steadily—although not so
fast that it will cause oscillation. After a time (theoretically infi nite), I will
reach the value 50, which will cause the output temperature to be at 45°C—
perfect!

But there is a catch. Suppose that the kitchen tap is turned on and the
fl owrate halves when the integrator has reached this value of 50. Now, with
the fl ow halved, the 0.5 becomes 1.0, so the new equation for the temperature
is

T I
I

= + +() +()
= + +()

20 90 1 2
20 90 50 3 since has not had ttime to change

= . degrees53 3

which is probably still enough rise to cause a yelp of pain.
Integral control is a valuable addition for tuning a process plant to give a

steady exact output, but is less useful when large disturbances can occur sud-
denly. That leaves us with the task of explaining derivative feedback.

Suppose that we are trying to control a motor by means of an input u that
sets its acceleration. The differential equation that describes the motor is

d x
dt

u
2

2
= −

If we apply a feedback signal proportional to x, we have

d x
dt

kx
2

2
= −

But as we will see, this is the same equation that we get for a pendulum. For
any positive value of k, the result will be an oscillation. (For any negative
value, it will cause x to run away toward infi nity!)

The D term in the controller estimates a derivative of x (assuming that we
cannot actually measure one), and we will later see that it can make the
system stable.

2.7.2 Understanding the Dynamics of a System

The theory taught in many courses is centered on the manipulation of transfer
functions. But a real problem does not start with a transfer function. Instead,
you are confronted by a physical system for which you have to derive the dif-
ferential equations yourself before any kind of mathematical analysis can even
start. What is more, the equations will certainly have some serious nonlineari-
ties, such as the “full drive” limit of the acceleration of a motor or the “bot-
toming” of a spring shock absorber.

The most valuable contribution of “modern control theory” (well, it’s still
only half a century old) is the concept of the system’s state. This is a set of
properties such as position and velocity that defi ne exactly what it is doing at
any instant.

Let us consider a classical second-order system, a swinging pendulum. The
acceleration of the bob is proportional to its displacement and is directed
toward the center. In equation form, this becomes

d x
dt

n x
2

2
2= −

If we differentiate cos(nt) twice, we get −n2 cos(nt). Similarly, if we differenti-
ate sin(nt) twice, we get −n2sin(nt) The general solution is a mixture of sines
and cosines of nt

PRAGMATIC CONTROL 39

40 THE BARE ESSENTIALS

A nt B ntcos sin() + ()

with coeffi cients A and B that are determined by the initial conditions. These
initial conditions will defi ne the motion from that time on.

But what if we had measured the values of the initial conditions a moment
later? The solution must still be the same. We can defi ne any time throughout
the swinging as our start time and use those initial conditions to defi ne the
future behavior of the pendulum.

So, those initial conditions are no longer quite so “initial,” but carry forward
all that we need to know about the past movement, in order to predict the
future. Those initial conditions have become “state variables.”

Each such variable has a rate of change that depends only on itself and
other state variables, or on the input of the system if it has one. Our two
variables in this case are the position and velocity of the bob, x and v.

The fi rst rate-of-change equation is rather obvious:

dx
dt

v=

The second equates the rate of change of v to the acceleration:

dv
dt

n x= − 2

Instead of a second-order equation, we have two fi rst-order equations.
For a simple position controller, there will similarly be two state variables,

position and velocity. The fi rst equation appears almost trivial—it just states
that rate of change of position is equal to the velocity.

The second equation concerns the rate of change of the velocity, and will
express it in terms of the input drive and the velocity itself if there is any kind
of friction. Now we can concern ourselves with the way in which feedback
will change the dynamics of the system.

Having worked out the equations, it is a matter of simplicity to write a few
lines of computer code to simulate the system, nonlinearities and all. It is easy
to add a few more lines to represent a control strategy and deduce the response
of the closed-loop system.

If these methods look a bit cut and try, they can be given a mathematical
gloss by using matrices to represent the equations when they are linear. The
matrices can be manipulated to represent the closed-loop system, too. In a
later section we will see that a routine mathematical operation gives an equa-
tion, the characteristic equation, from which the stability of the system can
be assessed.

But that is getting ahead of the practicalities of designing a controller. Let
us consider, for example, the control of the end effector of a robot.

2.7.3 Practical Design

The fi rst task of the designer will have been to choose a motor and gearbox
that will give an appropriate top speed and torque. Let us assume that sensors
are in place to measure both the position and the velocity.

It can be shown that a simple second-order system such as this will be stable
for any values of negative feedback of the two variables. But mere stability is
not enough. We want a response that does not overshoot and a fi nal position
that is not defl ected excessively if there are disturbing forces.

Linear theory assumes that if the error is doubled, the drive to the motor
will also be doubled. But this is a real motor, with a real drive amplifi er that
has a limit on the output it can give. To be sure that the error is kept within
bounds, we must ensure that this full drive is applied if the maximum accept-
able error is exceeded. This error is termed the proportional band, the range
of steady errors for which the drive will be proportional to the error. Outside
this band, the drive will saturate.

How much velocity should we feed back? The simple answer is: “Enough
to avoid an overshoot.” From the largest likely initial error, the motor must
accelerate toward the target, but start to decelerate soon enough that the load
can come to rest without overshoot. As the speed builds up, the contribution
of the velocity feedback must cancel out the position term by the halfway
point.

Pragmatic design such as this is greatly at odds with the linear approach
that is conventionally taught. But when the system is dominated by a nonlin-
earity such as drive saturation, the linear approach is no longer appropriate.
That is not to say that we cannot apply analytic tools to the task, as you will
see later in the book.

2.8 ROBOTICS AND KINEMATICS

Machine tools were traditionally built around slideways and pivots, so that in
a lathe the work was spun about an axis while a cutter moved in straight lines
to carve it into cylindrical sections. Generally, just one of the controlled axes
would be adjusted at a time. The involvement of a computer has meant that
robot manipulators could be freed from the need to move in straight lines
and circles.

Now we are faced with a robot with six rotary joints, linking arm segments
in series in a way that can in theory reach any point in its workspace with a
toolpiece held at any angle.

The art of calculating the end effector position and orientation from the
six angles of the axes is termed kinematics. Some elegant matrix methods that
we will meet later have been developed to ease the calculations. But that is
only half the problem—and the easy half at that.

ROBOTICS AND KINEMATICS 41

42 THE BARE ESSENTIALS

If we know where we want to put the tool, we need a way of calculating
the axis angles that will achieve it. This is a much less straightforward calcula-
tion called inverse kinematics. We will also be interested in the relationship
between the velocities of the axis angles and the velocity of the toolpiece.
This is where dynamics comes in.

For all except the simplest of mechanisms, these problems are likely to get
mathematically intense. This is a good place at which to round off the bare
essentials and dig deeper into the toolbox.

43

3
Gaining Experience

These initial remarks are directed to the lecturer or examiner of a course on
mechatronics. The experiment instructions that follow can be used as course
notes for the students.

Practical laboratory experience is an essential ingredient for linking
together the diverse aspects of mechatronics. But it is necessary to choose
among a wealth of alternatives when selecting and designing experiments.

Numerous experiments are available on the market, but they are usually
very costly. Much worse, many of them require very little creativity or under-
standing on the part of the student, consisting instead of a ritual of knob
turning, measurement, and graph plotting.

In the experiments that follow, the students are required to create software
from scratch, not just by dragging icons in a Graphic User Interface. They
add hardware by connecting circuits that they could easily replicate from
component level—indeed, an able technician should have no diffi culty in
fabricating these experiments from catalog components.

There is, however, the problem of the choice of computing platform.
When mechatronics ability comes to be applied by the graduated student,

will it be to use a PC for control and coordination tasks, or will the objective
be a mechatronic product with an embedded microcomputer? Should the
software lean toward the latest version of the .NET environment, or should
it be based on downloading the simplest code to a single chip?

An embeddable chip such as the HC12 certainly has all the input–output
capability and the computing power to control any of the experiments here.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

44 GAINING EXPERIENCE

It has numerous ADCs and output pins, with an abundance of program
memory. But its “user interface” is limited, to say the least. It will need to be
linked via its RS232 serial capability to a PC (or its equivalent) on which the
student can write, edit, save and then compile or assemble the software. The
link will also be needed to upload data for display or plotting.

Instead, a simple PC can in principle perform all the tasks of development
interface, performance monitor, and real-time controller, with no additional
circuitry beyond an output driver to power any motors and a simple analog-
to-digital converter for reading sensor signals. The fl y in the ointment is that
simple PCs and ADCs are becoming increasingly hard to fi nd!

If you do not have a suitable ADC card, you will fi nd the software in
Chapter 5 for using an MCP3204 four-channel 12-bit ADC chip, costing only
a few dollars. Apart from a connector for the printer port and a length of
ribbon cable, no other components are needed for the interface if the signal
voltages are of low impedance. The chip can even be powered from one of
the output pins. One more chip such as the TL074 can provide four buffer
amplifi ers for higher-impedance signals.

Each elaboration of the Windows operating system seems designed to put
more distance between the user and the actual operation of the hardware.
Vendors have dropped simple ADC cards from their lists in favor of FIFO-
buffered elaborations that require a monstrous software driver library to use.
However there are “workarounds” to enable you to use even these, although
life is much easier if you have a board of traditional design. Also, many prob-
lems can be avoided if you have retained a copy of your old Windows 98.

An alternative is to use the HC12 or a similar microprocessor as a “slave”
interface. With a simple protocol, it can be asked to reply with the values on
any of the ADC inputs, to latch output values and apply them to output bits
or mark–space registers. Using the serial interface of the PC, rather than a
proprietary plugged-in card, it should be proof for some years from the efforts
of the operating system writers. The effective conversion time will be greatly
increased by the serial communication, but when set to a high baud rate, this
should still be acceptable.

This might at fi rst threaten to present the same dangers as the Labview
approach, in which the interfacing is regarded as a piece of magic into which
the student is not supposed to delve. But the student can certainly unravel the
simple code of the HC12 to see how it ticks. What is more, a second level of
the experiments can see the students writing HC12 code to achieve the control
objectives without the intervention of the PC, once the code has been
downloaded.

A further resource, to be found on the accompanying Website at http://
www.essmech.com/3/vb.htm, is an example of the use of Visual Basic rather
than QBasic for constructing code for these experiments. The conversion is
a very simple one.

The fi rst experiment, however, requires no input at all. It uses the printer
port to drive two stepper motors that will form the essence of a “mobile

COMING TO GRIPS WITH QBasic 45

robot.” There is little theory involved, but it offers the great satisfaction of
seeing a computer moving a “robot” about with homegrown software. But
fi rst it is necessary to settle on the software environment to use. The following
discussion is aimed at both instructors and students.

3.1 COMING TO GRIPS WITH QBasic

The choice of computer language is always a thorny issue. Partisan support
can be as ardent as that of any football supporter, and any choice is going to
upset somebody. It could be tempting to select the “newest and the best,”
perhaps a version of C with the greatest number of pluses after it, but for
getting started the greatest simplicity will give the greatest advantage.

An early mainstream language was FORTRAN, but it was hidebound with
conventions designed to fi t in with the use of punchcards! Some time later it
was followed by Algol, a language that treated line endings with disdain and
abounded in semicolons.

When “personal” microcomputers began to be sold, the advantage of sim-
plicity had market value. Two varieties of Basic, BasicA, and GWBasic had
simple syntax and were well within the capabilities of a generation of school-
children. However, they had their roots in “line at a time” program entry
and editing and depended heavily on line numbers, even more so than
FORTRAN.

Meanwhile Algol had evolved into Pascal, taking its semicolons with it.
Algol and Pascal both use labels, rather than numbers, to tag special points
in their code.

Soon on-screen editing was the only way to go, and line numbers could be
dropped. Quick Basic borrowed some of the best features of Pascal and com-
bined them with the simplicity of Basic. Version 4.5 included a compiler that
could effi ciently reduce your code to an .EXE fi le and this was soon followed
by Visual Basic for DOS.

Quick Basic caught the attention of Microsoft and a stripped-down version,
QBasic, was included in DOS operating system disks and in installation disks
for all versions of Windows before XP. Meanwhile, the same syntax was used
for Visual Basic, both as part of Visual Studio and as a scripting language in
most, if not all, Microsoft Offi ce applications.

It is probable that any serious real-time programming will be performed
in some version of C. It is second cousin to assembly language, the lowest
level at which it is convenient to program a microcomputer, and as such it has
access to processes at a fundamental level. However, C has quirks of cryptic
syntax that make reading the software of even the most careful programmer
an arduous exercise in concentration.

QBasic code can be read like a novel, as I hope that you will soon agree.
Just as in C, there are ways to perform fundamental operations such as writing
and reading bytes directly to or from peripheral interfaces.

46 GAINING EXPERIENCE

3.1.1 A Simple Start

Launch QBasic, and the introductory page will appear. You can take a quick tour
of the Help fi les or press 〈escape〉 to go straight in. Type in the program line

play “cdeccdecefgn0efg”

As you press 〈return〉 at the end, you will see the word PLAY change into
uppercase. It means that the syntax has been checked and the keyword
recognized.

Now run the program—yes, it really is a program. There are two ways. You
can click on run in the menu bar and then start in the submenu that drops
down, or else you can press 〈shift–F5〉.

What did it do? You should have heard a simple tune.
If you want to know more about the PLAY routine, put the cursor on the

word and press 〈F1〉—there’s everything you could ever ask for. Press 〈escape〉
to clear the Help page.

So, what has this got to do with control?
Here we have a very simple way to measure out time, because the music

plays the notes at a speed that does not depend on the speed of the processor.
We can easily control the speed at which it plays—put another line at the start
of the program, to get

PLAY “L8”
PLAY “cdeccdecefgn0efg”

Run it again. What is the difference? Now change L8 to L16, run again. Try
L64. Then try “L64T255”.

So, a PLAY statement can measure out an interval of time that is indepen-
dent of the speed of the computer. In order to perform real-time digital fi lter-
ing, we have to have good control of timing.

3.1.2 Using Graphics

Clear your program and start again by selecting new. (To fi nd it, click on
fi le.) Do not save.

The line

SCREEN 12

will set a graphics mode. A second line

WINDOW (0, -1.1) – (1000, 1.1)

sets the screen coordinates to a range of 0–1000 across and −1.1 to +1.1 from
bottom to top. Then

COMING TO GRIPS WITH QBasic 47

LINE (0, 0) – (1000, 0), 9

It will draw a blue line across the screen. The 9 specifi es “bright blue.” Put
the cursor on the word LINE and press 〈F1〉 to see all the details.

Put in these three lines and run the program. Well, it’s a start! Now let’s
draw something. Enter the following lines:

FOR i = 1 TO 1000
 PSET (i, SIN(I / 100)
NEXT

The PSET (point set) routine puts a dot at the coordinates in the brackets.
Run the program, and a sine wave will fl ash onto the screen. So how do

we slow it down? Put the line

PLAY “L64T255”

at the start of the program and

 PLAY “n0”

just before the NEXT line. (n0 is the code for silence!)
Now you see the sine wave crawl across the screen, taking 12 seconds to

run.

3.1.3 A Real-Time Model

Let us now try to model a lowpass system—an example of such a system would
be a resistor–capacitor lag. It is really not diffi cult, although you will fi nd
much more information on the theory later in the book.

First we need an input signal. Let us make a square wave. A neat way to
do it is with a logic operation.

In numbers ranging from 128 to 255, from 384 to 511, and two more ranges
below 1000, the “128-bit” of the binary value is set. So the logic function
(i AND 128) will cycle from 0 to 128 four times.

IF (i AND 128)>0 THEN
 u = 1
ELSE
 u = -1
END IF

Put these lines just before the PSET line and change the PSET to

PSET(i, u)

48 GAINING EXPERIENCE

This time you should see four cycles of square-wave—lines of dots at the top
and the bottom of the screen.

So, how do we make the lowpass fi lter? Try adding the lines

x = x + (u - x) / 20
PSET (i, x), 14

after the END IF line. There in yellow is the waveform that you would expect
from an RC circuit driven by a square wave.

So, how does it work? The differential equation corresponding to a lowpass
fi lter with time constant T and input u is

T dx dt u x= −

So to a fi rst (and pretty good) approximation, the change in x over a small
time dt is

u x dt T−()

or in code terms

x = x + (u - x) * dt / T

Instead of dt/T, we have used the numeric value 1/20 in the code above—
in other words, T has the value 20 dt. Now in our real-time plot, we have
dt = 12 ms, so the time constant T is 240 ms or around a quarter of a
second.

Later we will see how this sort of fi lter can be useful.
You might like to save this as SIM1.BAS before you choose new.

3.1.4 SUBs and FUNCTIONs

Clear the decks again with new (fi rst click on fi le).
By defi ning a function, a single word can be put in your program to repre-

sent a whole operation such as reading an input device. Type the line

function twice(n)

On pressing 〈return〉 on your keyboard, you will see this change to

FUNCTION twice(n)
END FUNCTION

and now you can type in your function between these lines. Put in the line

THE SIMPLEST MOBILE ROBOT 49

twice = 2 * n

Now we are on a special page just devoted to this function. To get up to the
main program, press 〈F2〉—where you will see the top line with untitled and
a second line with twice. Click on untitled. You will see a blank page. Now
enter the line

PRINT twice(7)

and run the program. You should not be too surprised to see the number 14
appear.

Functions can be called recursively. Try changing the line to

PRINT twice(twice(7))

and run the program.
SUBs are similar, except that they do not return a value. Clear the decks

again and type

SUB treble(n)
n = 3 * n

(The computer will have added an END SUB.)
Press 〈F2〉 to go to the main program page (untitled). Now enter the

lines

CLS ‘Clear the screen
x = 5
treble x
PRINT “The answer is “; x

There are a few points to notice. In the SUB, n is a “dummy variable.” The
SUB does its task on whatever variables are passed to it, in this case the vari-
able x. The value of x is changed inside the routine. (For C buffs, the default
is that x is passed as a pointer)

The single quote after CLS means that the rest of the line is a “remark”
and is not treated as code.

3.2 THE SIMPLEST MOBILE ROBOT

The “turtle” was popular in the mid-1980s for teaching children the rudi-
ments of programming. It accepted combinations of commands telling it to
turn or advance, then it trundled across the fl oor.

50 GAINING EXPERIENCE

In essence, it consisted of two stepper motors, one driving the left wheel and
the other, the right. It steered like a wheelchair, by turning the driving wheels
by differing amounts, while skids in front and behind stopped it toppling.

3.2.1 Driving a single Stepper

A starting point for this project is to drive just a single stepper motor. Raid
the junk heap for a discarded 51–4 -in. fl oppy disk drive. In addition to the elec-
tronics and a very interesting motor that rotates the disk, it has a square,
chunky stepper motor that drives the head in and out.

This stepper has the advantage that it will operate on a small current, and
if you are prepared to take the risk (use a “thirdhand” computer), you can
drive it directly from the printer port. It has the disadvantage that when oper-
ated in this way it has very low torque, and serves merely to demonstrate how
a stepper steps. Its two windings have no center tap, so to use it in the “turtle,”
you would have to use an H-bridge driver rather than the simpler Darlington
driver. But more of that later.

Use a test meter to determine how the four leads are connected to the two
windings—pair those leads between which you fi nd some conduction as NS
and EW.

To use the printer port, you will need a printer cable. Crimp a pair of
25-way connectors onto a ribbon cable, so that you have plugs of opposite
“genders” at the ends, wired pin to corresponding pin. This will act as a
printer port extender cable. When connected, the “pins” at the free end will
take the form of hollow sockets.

For this elementary test, you can push wires into the connector sockets
to attach the motor—connect N, S, E, and W to sockets 2, 3, 4, and 5,
respectively.

You will need to know the address of the printer port—it is probably at
&H378 as listed in the software below, but might instead be at &H278. The &H
means that the rest of the number is in the hexadecimal scale of 16. So &H10
is the decimal value 16, &H100 = 256, and &HFF = 255.

You can use Windows to fi nd the address of the port. Follow the trail start,
settings, control panel, system, device manager, ports, lpt1, properties,
and resources—and there at long last you will see the address range of the
port. The fi rst address is the one you want. Substitute your correct address in
all the statements below.

Launch QBasic. Then twiddle the motor shaft with your fi nger and thumb.
It should turn freely.

Enter the following line of code, and then run it:

OUT &H378, 1

Feel the motor again—it should feel lumpy when you turn it.
You have just applied 5 V (or a little less) across the NS winding. Try

THE SIMPLEST MOBILE ROBOT 51

OUT &H378, 5

and run it. The lumpiness should be somewhat greater—you have applied 5 V
across both the NS and EW windings.

For neatness, run

OUT &H378, 0

to ease the load on the printer port.
Stick and fold a label over the motor shaft, to form a pointer so that you

can see any movement more clearly.
Now is a good time to start to give some structure to the code. Let us fi rst

defi ne the port address as a constant, in the form

CONST port = &H378

Now we can arrange the main part of the program as a loop, as follows:

FOR i = 1 TO 50
 stepto 5
 stepto 6
 stepto 10
 stepto 9
NEXT

So, what does stepto do? It does nothing until we write it!

SUB stepto(n)
 OUT port, n
 PLAY n0
END SUB

There’s another use for the PLAY routine for timing.
Run the program, and you should see the pointer stepping sedately round,

making one complete revolution if the motor has 200 steps per revolution.
Feel the torque that is required to stop it.

Now speed things up by adding the line

PLAY “L64T255”

at the top of the program.
Rotation should now be much more brisk. But what has happened to the

torque, when you grasp the shaft?
The signifi cance of the numbers 5, 6, 10, and 9 is that they represent the

binary numbers

52 GAINING EXPERIENCE

0101
0110
1010
1001

The 4-bit code can be regarded as representing WENS (the most signifi cant
bit comes fi rst, so N = 1, S = 2, E = 4, and W = 8) and these codes will give
us NE, SE, SW and NW.

For more precise control, you can employ half-step mode using N, NE, E,
SE, S, SW, W, and NW, taking eight half-steps for each electrical cycle. The
corresponding numbers are 1, 5, 4, 6, 2, 10, 8, 9.

Try it!

3.2.2 Driving More Powerful Stepper Motors

Now we are ready to move on to the stepper motors that you will use for the
trolley. These should have six wires, so that in addition to the N, S, E, and W
connections, there are center taps to the two coils. Now these center taps can
be connected to +12 V, and the drive circuit will pull one or two of the NSEW
connections to ground.

A drive circuit that can do the job is a single-chip “octal Darlington driver”
such as the ULN2803A, which can be connected directly to the output pins
of the printer port. It has eight outputs that can be connected to the NSEW
pins of two stepper motors. It even contains diodes to suppress the “spikes”
when the inductive loads are turned off.

Connect the circuit as shown in Figure 3.1. Switch on and run the same
software again, to make sure that the connections are in order. (When trou-
bleshooting mechatronics, try to make only one change at a time, inching your
way from one working system to the next.)

It is now time to test the second motor. Change a line of your stepto
routine to

 OUT port, n * 16

which will control the most signifi cant 4 bits of the port.
The new motor should move in the same way as the other. Try

 OUT port, n * 17

and both motors should move together.

3.2.3 The Mobile Robot

Mount the motors and wheels as shown in Figure 3.2, and you have the rudi-
ments of a mobile robot. Now, however, we must write some much better
structured software.

THE SIMPLEST MOBILE ROBOT 53

U
L

N
2803A

1Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

Pin 8

Pin 9

Pin 25

0v 12v

N1

N2

S1

S2

E1

E2

W1

W2

Motor 1

Motor 2

Printer port pins

Skid

Motors

Figure 3.1 Printer port connections and driver chip.

Figure 3.2 Sketch of a mobile robot.

54 GAINING EXPERIENCE

Let us defi ne variables Rpos and Lpos for the number of steps that the
right and left wheels will have made.

Let us also fi ll two tables with codes for the right and left wheels,
respectively:

CONST port = &H378
DIM SHARED Rpos, Lpos
DIM SHARED Rtable(7) AS INTEGER, Ltable(7) AS INTEGER
PLAY “T255L16”
FOR i = 0 to 7
 READ j
 Rtable = j
 Ltable = 16 * j
NEXT

DATA 1, 5, 4, 6, 2, 10, 8, 9

This might need some explanation. The SHARED means that the variables
defi ned in the DIM statement will exist in all subroutines—otherwise subrou-
tines can have their own private variables of the same name. READ picks up
values one by one from a DATA statement.

Now we need a “user interface” to provide manual control of the robot.
There is a function INKEY$ that grabs a value from the keyboard. If no key
is pressed it is the “null string.” Let us start simply by defi ning fi ve keys, f
and b to run forward or backward, l and r to spin left or right and the space
bar to stop. We will use variables dl and dr to hold the value by which to
change Lpos and Rpos at each timestep:

DO
 a$ = INKEY$
 SELECT CASE a$
 CASE “f”
 dr = 1
 dl = -1
 CASE “b
 dr = -1
 dl = 1
 CASE “l”
 dr = 1
 dl = 1
 CASE “r”
 dr = -1
 dl = -1
 CASE “ “
 dr = 0
 dl = -0

THE SIMPLEST MOBILE ROBOT 55

 END SELECT
 Rpos = Rpos + dr
 Lpos = Lpos + dl
 DoMotors
LOOP UNTIL a$ = “q”
OUT port, 0
END

Note that when both wheels run forward, one motor must turn clockwise and
the other one anticlockwise!

Now we need the DoMotors SUB. We can use the MOD operator to fi nd
Rpos modulo 8. That means that as Rpos increases, Rpos MOD 8 cycles
repeatedly through the numbers 0 to 7, just the thing we need to look up the
drive value in the table:

SUB DoMotors
OUT port, Rtable(Rpos MOD 8)+Ltable(Lpos MOD 8)
PLAY “n0”
END SUB

Enter and run the program—do not forget to save it fi rst. The trolley should
obediently respond as you tap keys, stopping when you press the spacebar
and the program ending when you press 〈q〉.

But that is just the start. From Lpos and Rpos you can calculate how far
you have gone (you will have to include a variable representing the circumfer-
ence of the wheels), and you can calculate your heading (you will have to
include another variable to represent the separation of the wheels). Indeed,
you can keep an estimate of your current position and change your program
to accept target coordinates.

You can even add simple sensors. The printer port has input bits for
“online,” “out-of-paper,” and several other conditions. You can read these bits
with

inp(port+2)

You can include the following defi nition in your software:

pin15 = 8 ‘True if high, used for error
pin13 = &H10 ‘True if high, printer present
pin12 = &H20 ‘True if high, out of paper
pin10 = &H40 ‘True if high, -ack
pin11 = &H80 ‘True if low, -busy

If you now add a contact that connects pin 12 to ground if the robot touches
a wall, then

56 GAINING EXPERIENCE

inp(port+2) AND pin12

will have the value zero if the wall is touched and 32 otherwise.
There are even some additional output bits at address port+1. These are

not buffered and cannot drive a load, however. Be careful. Other bits on this
port control the mode of the printer port, determining whether it is buffered
or can act also as eight input bits.

pin1 = 1 ‘True gives low, Strobe
pin14 = 2 ‘True gives low, Auto linefeed
pin16 = 4 ‘True gives high, initialise
pin17 = 8 ‘True gives low, select

3.3 BALL AND BEAM

In the mid-1960s the focus of my research was “Fast model predictive control
for higher order systems.” I needed a “higher-order system” on which to
demonstrate its effectiveness and devised the ball-and-beam experiment,
based on a childhood memory of a game in a seaside amusement arcade.

One outcome was that I discovered that it could be controlled just as effi -
ciently by much simpler pragmatic methods. My research was a success, but
my belief in the usefulness of “interesting” academic solutions was seriously
undermined.

You might like to see an article linked at http://www.essmech.com/3/3.

3.3.1 Construction

A ball rolls in a grooved plank that is hinged at a central pivot. The motor is
driven to tilt the plank, and the task is to control the position at which the
ball comes to rest. In this stepper motor version, the ball will oscillate gently
close to the target.

When manual control is provided as an alternative, it can be seen that the
computer performs much better than a human being. The mechanical con-
struction is clear from Figure 3.3.

There remains the problem of sensing the ball position. One variation is
to mount a Webcam above the track and deduce the ball position from the
“white blob” in the image. However, we will try a solution that uses much
simpler technology.

The method of making the original sensor, and one that is still acceptable,
is to stretch a resistance wire along the track. The steel ball makes contact
between the wire and another wire on the opposite face of the “V,” thereby
forming a potentiometer.

The resistance of the wire is likely to be rather small, so a series resistor
will have to be added to limit the current and avoid overheating. This means

BALL AND BEAM 57

that the voltages will also be small and there may be a need to add an
amplifi er.

As the ball rolls, the contact will almost certainly break at times. This
would cause the output voltage to suffer from steps to zero and would intro-
duce a large noise signal. With the addition of a capacitor, maybe 0.1 µF
(e.g., see Fig. 3.4), the output voltage stays constant when the circuit is broken
and the noise consists simply of the step to the new value when contact is
resumed.

3.3.2 A Control Strategy

Now we have several new points to establish before the task is complete:

• We must be able to read the ball position into the computer, by writing
a routine to drive the ADC.

• We must be able to estimate the ball velocity.

Figure 3.3 Mechanics of ball-and-beam experiment.

to ADC

+5v

10K 47K

Wire

resistance

R

5R

0.1µF

–

+

Figure 3.4 ADC input circuitry, including operational amplifi er.

58 GAINING EXPERIENCE

• We must be able to control the plank tilt in response to the ball position
and velocity.

The control strategy is of a simple “nested loops” format:

For each value of position error, we will defi ne a demanded velocity. This
function will be nonlinear, in that there is a top demanded speed above
which we do not wish to go. The difference between the demanded
velocity and the estimated velocity is the velocity error.

For each value of velocity error, we will demand a tilt angle. This function
will be nonlinear, in that there is a maximum tilt beyond which we do
not wish to go.

The stepper motor will be driven in the direction that reduces the tilt error
at the maximum stepping rate.

3.3.3 Software

We will start with the version of software that gives manual control, with code
very similar to that for the mobile trolley’s stepper motor:

CONST port = &H378
DIM SHARED Tilt, Demand
DIM SHARED Table(7) AS INTEGER
PLAY “T255L64”
FOR i = 0 to 7
 READ Table(i)
NEXT

DATA 1, 5, 4, 6, 2, 10, 8, 9

DO
 a$ = INKEY$
 IF VAL(a$)>0 then
 Demand = (VAL(a$) - 5)/4 ‘a fraction -1 to 1
 END IF
 DoTilt
LOOP UNTIL a$ = “q”
OUT port, 0
END

SUB DoTilt
Tilt = Tilt + Demand
OUT port, Table(Tilt MOD 8)
PLAY “n0”
END SUB

BALL AND BEAM 59

You will need to use 〈F1〉 to discover what the function VAL does.
The number key that you hit will set the speed of the tilt motor, 〈1〉 tilting

one way, 〈9〉 tilting the other way, and 〈5〉 causing it to stop.

3.3.4 The ADC Routine

This is a good time to add the ADC routine. It will differ for each interface
technique, but the rest of the code can remain the same.

In Section 5.3.5, the code is given for interfacing a chip, the MCP3204,
directly to the printer port. This is certainly the most economical and “future-
proof” way to go if you do not already have an ADC card.

For most ADC cards, the principles are the same. The card has a base
address, just as the printer port has address &H378. It will in fact use a
range of 8 or maybe 16 addresses from the base upward. Writing to one of
these addresses will set the channel number. Another will start the
conversion.

Reading from one of the addresses will give access to a “busy” or “data
ready” bit. The simplest code will enter a loop, repeatedly reading this bit
until the answer is ready. It wastes a few microseconds, but is less prone to
error than relying on interrupts.

If the converter is a 12-bit one, the lower 4 bits of the byte that contains
the data-ready bit will contain the most signifi cant 4 bits of the result. Yet
another register will contain the lower 8 bits of the result, so we need only
combine these and return to the program.

A little extra fi nesse is added if we scale the answer to lie in the range −1
to +1, so that the rest of the code is not changed if our precision is different.
Here is an example. It is for a Contec Series 100 ADC12-16M board, so
ancient that it will no longer fi t into the PCI slot that is provided on current
PCs:

CONST b = &H220 ‘board base address
CONST ADlo = b + 4
CONST ADhi = b + 5
CONST chan = b + 10 ‘multiplexer channel
CONST start = b + 12
CONST busy = 16 ‘busy bit in ADhi value

FUNCTION adc (c%)
DIM v%
OUT chan, c% ‘set channel number
OUT start, 255 ‘tell ADC to start conversion
DO ‘wait until ready
 v% = INP(ADhi)
LOOP UNTIL (v% AND busy) = 0
v% = (v% AND 15) * 256 + INP(ADlo)

60 GAINING EXPERIENCE

 ‘combine high nibble
 ‘with low byte
adc = (v% - 2048) / 4096 ‘change range to +/- 1
END FUNCTION

Here is the code for a different brand of board, an Advantech PCL-818L, also
made to fi t the older card slots:

CONST adstart = &H2A6
CONST adhi = &H2A7
CONST adlo = &H2A6
CONST readybit = &H40

FUNCTION adc(chan%)
DIM hibyte AS INTEGER
OUT adstart, &H80+chan%
DO
 hibyte = INP(adhi)
LOOP UNTIL hibyte AND readybit
adc = (INP(adlo) + 256*(hibyte AND 15) - 2048)/2048
END FUNCTION

A more recent Advantech card that does fi t the newer slots is the PCI-1710. It
provides the data in a 16-bit word, and to use it, it is necessary to extend QBasic
with a library function that uses the INW function of the PC’s micro. To add
this library when you run, simply launch QBasic with the line qbasic /linw,
either by launching it from the run control in the start bar or by making a
shortcut on the desktop. You can edit the shortcut to add the extra /linw.

The ADC code and the library function have been supplied by Rodney
Elliott of the University of Canterbury, New Zealand. You can fi nd both at
http://www.essmech.com/3/3/4.htm.

Two other alternatives are to use a “satellite” microcontroller attached to
the serial port to perform the ADC conversion, or to construct the simple
ramp-based converter described in Section 5.3.5.

So, having added the appropriate constants and ADC routine to our code,
we can add some graphical output.

3.3.5 Graphics

After the constants have been defi ned, add

CONST Tmax = 4, dt=.012
SCREEN 12
WINDOW(-.1, -1.1)-(Tmax, 1.1)
LINE (0,0)-(Tmax,0),9

BALL AND BEAM 61

Now we plot the ball position by adding

t=t+dt
if t>Tmax then t=0
Ball = Adc(0)
PSET (t, Ball)

immediately after the DoTilt line.
This will give us a dot that crosses the screen in 4 seconds, since the note

length that we have set is equivalent to 0.012 s.
You might need to make adjustments to the amplifi er, if you use one, to

get the value of the ball position to change over the range of −1 to 1. However,
provided you have a reasonable range of change, you can replace the
Ball = line with

Ball = 2 * (Adc(0) - Ballmin)/(Ballmax - Ballmin) -1

where Ballmin and Ballmax are the ADC values you have read at the two
extremes of the plank. That will check out the hardware, but we still need to
estimate the ball velocity.

Do you still remember the simulation of the lowpass fi lter in Section 3.1.3?
It is no harder to simulate a highpass fi lter to make an estimate of the ball’s
speed. The whole thing reduces to two lines of code:

Ballvel = (Ball - Ballslow) * 10
Ballslow = Ballslow + Ballvel*dt

The argument is the same as before. Ballslow is a lowpass-fi ltered version
of Ball, just as x was a low-pass-fi ltered version of u in Section 3.1.3. In
this case, the time-constant smoothing the differentiation will be 1–10 s. Do not
worry. There will be ample theory on this later in the book.

Add these lines, together with

PSET (t, Ballvel),14

after the existing PSET line in your code, and you should be able to see the
movement of the ball and its velocity on your screen, as you command the
plank to tilt.

3.3.6 The Strategy in Software

Now we just need to automate the process. But let us do it in stages.
First, let us make the demand input control the tilt target, rather than the

tilt rate. Add a line at the top

62 GAINING EXPERIENCE

DIM SHARED TiltDemand

and change the fi rst line of code in DoTilt to

Tilt = Tilt + SGN(TiltDemand - Tilt)

(Use the 〈F1〉 key to see what SGN does.) Then add the line

TiltDemand = 20 * Demand

just before the DoTilt line in the main program, and you should fi nd that
the ball is a little easier to control. You might fi nd that you need to change
the number 20 to some other value that gives a useful range of tilt angles.

Of course, the computer does not “know” when the plank is level, so you
must hold it level when you start to run the program.

For the next stage, let us make Demand control the velocity of the ball.
Now we need something like

TiltDemand = kt * (0.2 * Demand - BallVel)

where kt is a gain constant that we would like to be large, to correct velocity
errors quickly.

We do not want the tilt to be too great, because it takes time to drive the
plank back to a level position. Let us defi ne SUB Limit.

SUB Limit(x, lim)

IF x > lim THEN
 x = lim
ELSEIF x < -lim THEN
 x = -lim
ENDIF

Now the line

Limit TiltDemand, 20

after TiltDemand is calculated, will limit the tilt to 20 steps either way.
Make the necessary changes to your code, and experiment with values of

the tilt gain, kt. Maybe you need to reduce the value of the tilt limit.
For the fi nal step, make Demand set the target position of the ball.
In the fi nal program, we will have the following constants and defi nitions at

the top, to which must be added the constants needed for the ADC routine

CONST port = &H378
DIM SHARED Tilt, TiltDemand

BALL AND BEAM 63

DIM SHARED Table(7) AS INTEGER
PLAY “T255L64”
FOR i = 0 to 7
 READ Table(i)
NEXT

DATA 1, 5, 4, 6, 2, 10, 8, 9
CONST Tmax = 4, dt=.012
SCREEN 12
WINDOW(-.1, -1.1)-(Tmax, 1.1)
LINE (0,0)-(Tmax,0),9

while the main loop of our code will become

DO
 a$ = INKEY$
 IF VAL(a$)>0 then
 Demand = (VAL(a$) - 5)/4
 END IF
 Ball = 2 * (Adc(0) - Ballmin)/(Ballmax - Ballmin) -1
 BallVel= (Ball - Ballslow) * 10
 Ballslow = Ballslow + BallVel * dt
 t = t + dt
 IF t > Tmax then t = 0
 PSET (t, Ball)
 PSET (t, BallVel), 14
 VelDemand = kv * (Demand - Ball)
 Limit VelDemand, Velmax
 TiltDemand = kt * (VelDemand - BallVel)
 Limit TiltDemand, TiltMax
 DoTilt
LOOP UNTIL a$ = “q”
OUT port, 0
END

You will have to add lines at the top to set the values that you choose for kt,
kv, VelMax and TiltMax. You might also wish to change the differentiator
time constant, which is at present set to 10.

As well as the code above, you will have an appropriate ADC routine
and

SUB DoTilt
Tilt = Tilt + SGN(TiltDemand - Tilt)
OUT port, Table(Tilt MOD 8)

64 GAINING EXPERIENCE

PLAY “n0”
END SUB

SUB Limit(x, lim)
IF x > lim THEN
 x = lim
ELSEIF x < -lim THEN
 x = -lim
ENDIF

You still have to hold the plank level when the program starts to run.

3.3.7 The Next Step

Now that your system has sensor inputs, the system can discover many of its
own parameters. The demonstration version can include switching between
control modes and can perform its own calibration at startup. This procedure
is as follows:

1. Tilt the plank left 100 steps. This will ensure that the plank hits its limit
stop, after which the motor will just “shudder” as more steps are
commanded.

2. Wait 3 s for the ball to run down the plank. Measure the value of Adc(0)
and store it as BallMin.

3. Tilt the plank slowly to the right, until the value of Adc(0) starts to
change. Here the plank will be level, so we would like to set Tilt to
zero. However, we want to output that particular NSEW combination
to the stepper motor to level the plank. So fi rst we set a variable Tilt0
to (Tilt MOD 8), then set Tilt to zero and afterward use ((Tilt0
+ Tilt) MOD 8) for looking up values from the table.

4. Tilt the plank to Tilt=20 and wait 3 s, or until the ball stops moving.
5. Measure the value of Adc(0) and save it as BallMax.

Now you can enter the loop for ball position control.

3.4 “PROFESSIONAL” POSITION CONTROL

An axis of an industrial robot is a far cry from the usual laboratory position
control experiment. Most students will be content to derive a response curve
that matches the classical “damped second-order response” found in books
on linear systems. The professional designer of a motion controller will reject
this out of hand. He or she will expect the system to stop at the target position
as though hitting a brick wall and to resist all defl ecting forces with only the
slightest perturbation.

“PROFESSIONAL” POSITION CONTROL 65

Far too many laboratory experiments are protected by a transparent cover.
This prevents the student from feeling the stiffness of the output. The present
experiment is meant to be poked and prodded unmercifully.

The hardware (see, e.g., layout in Fig. 3.5) forms three-quarters of an
inverted-pendulum experiment that follows, although the control strategy is
quite different.

There are many ways to construct this experiment. The machine in our
mechatronics laboratory has survived several generations of students, although
the new version illustrated here has just been completed. The original motor
was marketed as a component for a battery lawnmower, but many suitable
motors are now sold for adding electric drive to bicycles.

The 100 W DC motor drives a pulley at one end of a toothed belt. The belt
pulls a trolley weighing half a kilogram along a track, constrained on one side
by a linear bearing and on the other by a ball race running on a fl at track
formed by a length of angle.

The belt is joined to the trolley on one side, passes around the motor pulley,
back under the trolley, around a second pulley at the other end of the track,
and back to the other side of the trolley. The second pulley turns a 10-turn
potentiometer. Also connected to the motor shaft is a small motor that acts
as the tachometer.

Care must be taken to avoid the rotating parts binding, when bearings are
aligned. The potentiometer and the tacho are mounted in sprung clips, so that
they can fl oat to accommodate any misalignment.

Two separate power supplies should be used. The sensors and ADC cir-
cuitry will use one supply while a second power supply drives the motor. If
sensors and motor were to share the same supply, there would be a risk of
high-frequency oscillation as the motor drive affected the sensor supply
voltage. Another advantage of separating them is that the motor supply can
be kept at zero when the program starts, increasing toward 12 V only as the
student’s full attention is on any oscillations or excursions of the system.

In the original experiment, the potentiometer is supplied by +15 and
−15 V supply lines, so that zero volts will represent the center of the track. In
the new version, using the single-chip converter, it is supplied from 0 and 5 V,

Motor

Tacho

10-turn potentiometer

Linear bearing

Angle as flat track

Figure 3.5 Position control hardware.

66 GAINING EXPERIENCE

with the ADC software arranged so that zero is read in the middle of the
range. In this case the tacho “ground” should be connected to the midpoint
of two 1 kΩ resistors connected across the 5-V supply.

There are a number of steps that we need to accomplish on the way. First
we must control a motor of up to 100 W, driving it bidirectionally. We must
also consider the use of mark–space control, so that the motor is not continu-
ously under full power.

We also look at the effect of “tacho feedback” for reducing the effect of
disturbances.

3.4.1 Simple Motor Control

The experiment can start with a variable DC power supply, a small DC motor,
and an N-channel power fi eld effect transistor (see Fig. 3.6):

1. Connect the motor to the power supply. Increase the voltage—probably
to around 10 V—so that the motor starts readily and runs at a reasonable
speed.

2. Switch off and disconnect the negative connection. Connect the fi eld
effect transistor in series with the motor. The source is connected to the
negative lead of the power supply, while the motor is connected to the
drain. The gate is left unconnected.

3. Switch on again. Hold the negative power supply contact and touch
the gate with your fi nger. The motor will not run. Hold the positive lead
instead and touch the gate. The motor should run as it did before con-
necting the transistor.

A suitable power transistor for this part is a BUK553 N-channel FET. It is
designed to be controlled by TTL (transistor–transistor logic) voltages, so you
can connect a computer output line directly to the gate.

This next part of the experiment again uses the parallel printer port of the
computer. The pins of interest are 2 to 9 for the output bits and pin 25 to serve
as a ground pin. As before, the port address will either be &H278 or &H378.

+

–
gs

d

Figure 3.6 Sketch of motor, FET, supply.

“PROFESSIONAL” POSITION CONTROL 67

Run QBASIC.EXE, then press the function key 〈F6〉 to select the immedi-
ate window. This allows you to run code at once, rather than saving it in a
program. Enter the line

OUT &H378, 255

followed by return. You should use a meter or an oscilloscope to check the
voltage of pin 2—it should be at 5 V. In fact, this command should have set
all eight lines from pin 2 to pin 9 to 5 V.

Now enter

OUT &H378,0

followed by return. The voltage should fall to zero.
If these actions do not work, repeat them using &H278 instead. In that case

also use 278 instead of 378 in the program below. Enter the following program
to make changing the outputs neater and more convenient:

port = &H378

DO
 a$=INKEY$
 IF a$<>”” THEN
 OUT port, VAL(a$)
 END IF
LOOP UNTIL a$=”q”

OUT port, 0

If you press the 〈1〉 key, pin 2 should be at 5 V and pin 3 at zero. Press the 〈2〉
key, and pin 3 should be at 5 V and pin 2 at zero. Press the 〈0〉 key, and both
should become zero. Press 〈q〉 and the program should end, tidying up by
setting the port to zero. Save it as P2.BAS.

Now switch off the motor power supply. Connect the computer ground (pin
25) to the negative line and pin 2 to the gate of the transistor. Switch on again.
By tapping the 〈1〉 and the 〈0〉 keys, you should be able to start and stop the
motor at will.

Of course, the motor will also run if you tap 〈3〉, 〈5〉, 〈7〉 or 〈9〉 and stop if
you choose an even number.

3.4.2 Unidirectional Speed Control

The “safe” version of hardware for this part of the experiment uses two min-
iature DC motors (see Fig. 3.7) that require only a few watts to drive them.
Later the much larger motor of the position control experiment can be used,

68 GAINING EXPERIENCE

with the belt disconnected, so that the trolley does not move. This motor uses
much greater power, and care must be taken to avoid overheating the fi eld
effect transistors used in the experiment.

You should fi rst run through these experiments with the miniature motors,
then repeat them with the larger motor. In each case the driven motor is con-
nected mechanically to a second DC motor. Both turn together. When they
run, a voltage is generated on the second motor that is proportional to the
speed. By connecting this voltage to an analog input of the computer, you can
use the speed as a feedback signal. This second motor is being used as a
tachometer.

As in previous experiments, the ADC routine will fi rst read in an integer
and then scale it to a fl oating-point value in the range −1 to 1. You need to
fi nd the code that is appropriate for your ADC and enter both the FUNC-
TION and the constants that defi ne the interface.

With this ADC routine and with the velocity voltage connected to channel
0, the start of a program to view the tacho signal can be as follows:

CONST tmax=4
SCREEN 12

WINDOW(0,-1)-(tmax,1)

dt = .01

DO

 a$ = INKEY$
 v = ADC(0)
 t = t + dt
 IF t > tmax THEN t = 0
 PSET (t, v)
LOOP UNTIL a$ = “q”

This will read the voltage and display it on the screen as a sort of oscilloscope
display. Spin the motors by hand, then run the driven motor by “dabbing” a
wire across source and drain of the control transistor.

+

–
gs

d

Tacho

Figure 3.7 Two small motors with FET.

“PROFESSIONAL” POSITION CONTROL 69

One of the most important tasks in feedback control is to ensure that the
signals are of the correct polarity. If they are not, negative feedback can
become positive feedback with disastrous results.

When you run the motor, make sure that the resulting velocity is shown on
the screen as positive. If it is not, reverse the connections of the tacho.

Pressing the 〈q〉 key will end the program.
When you are sure that this part of the program is working correctly, you

can expand it to obtain closed-loop control. You need to include a command
for turning the motor on and off and another for comparing the speed with
some demanded value. In turn, something is needed for changing the demand
value at the press of a key:

CONST port= &H378
CONST tmax=4

SCREEN 12
WINDOW (0,-1) - (tmax,1)

dt = .01

vdemand = 0

DO
 a$ = INKEY$
 if a$ = “>” THEN vdemand = vdemand + 0.1
 if a$ = “<” THEN vdemand = vdemand - 0.1
 v = ADC(0)
 IF vdemand > v THEN OUT port, 1
 IF vdemand < v THEN OUT port, 0
 t = t + dt
 IF t > tmax THEN t = 0

 PSET (t, v)
 PSET (t, vdemand), 12 ‘red

LOOP UNTIL a$ = “q”

OUT port, 0

Run the program. The motor should remain still. Now tap the “>” key once
or twice (remember to press 〈shift〉), and the motor should turn. Hold the
motor shaft loosely to try to slow it down. You should see the motor current
increase as indicated on the power supply meter, with very little drop in
speed.

In practice it is preferable to use “.” in place of “>” and “,” in place of “<”
so that there is no need to press the 〈shift〉 key.

70 GAINING EXPERIENCE

3.4.3 Bidirectional Speed Control

When the motor turns in just one direction, the speed can be controlled
simply by turning the motor on and off. If the motor is to be capable of turning
both ways, we must have some means of driving it with either a positive or
negative voltage. We could use two power supplies to give positive and nega-
tive voltages, or we can use a single power supply with an H-bridge (see
Fig. 3.8).

As we have seen, this enables each wire of the motor to be connected either
to the positive supply or to ground. The schematic has the appearance of the
letter “H,” giving it its name. The circuitry must at all costs prevent one side
being connected to both positive and ground at the same time!

The circuit uses two bits of the parallel printer port, bit 0 and bit 1 on pins
2 and 3. When the output value is 1, the motor runs in one direction; when it
is 2, it runs in the opposite direction; and if it is zero, the motor free-wheels
until it stops. (Remember that the binary value of bit 0 is 1; of bit 1, is 2; of
bit 2, is 4; and so on.)

Start off by using the program of the last section. You will have changed
the connections to the motor in order to replace the single transistor by a full
H-bridge drive. In the process, the sense of the motor drive could have
changed.

When you tap the “>” key, the motor should start to run. If the velocity
trace on the screen is positive, all is well. If not, you must reverse the motor
leads or the tacho leads. But which?

If you are using the position control rig with the belt removed, check that
the motor runs in a sense that would carry the trolley to the right. If not,
reverse it. Now check the tacho voltage and if necessary reverse the tacho
connections to ensure that the trace is positive.

You should now get the same velocity control as before—simply running
in the positive direction. Now is the time to change the software to take
advantage of the two-way drive.

BUZ271BUZ271

BUK553BUK553

22K

22K22K

22K

4.7K4.7K

4.7K4.7K

Motor

2N3704 2N3704

Figure 3.8 H-bridge schematic.

“PROFESSIONAL” POSITION CONTROL 71

The previous program needs only slight modifi cation to give “bang-bang”
control. If the velocity error (v − vdemand) is positive, full negative drive is
applied. If the error is negative, the drive is positive.

CONST port= &H378
CONST tmax=4

SCREEN 12

WINDOW (0,-1) - (tmax,1)
dt = .01

vdemand = 0

DO
 a$ = INKEY$
 IF a$ = “.” THEN vdemand = vdemand + 0.1
 IF a$ = “,” THEN vdemand = vdemand - 0.1
 v = ADC(0)
 olddrive=drive
 IF vdemand > v THEN
 drive = 1
 ELSEIF vdemand < v THEN
 drive = 2
 ELSE
 drive = 0
 END IF
 IF drive = olddrive THEN
 OUT port, drive
 ELSE
 OUT port, 0
 END IF
 t = t + dt
 IF t > tmax THEN t = 0
 PSET (t, v)
 PSET (t, vdemand), 12 ‘red
LOOP UNTIL a$ = “q”
OUT port, 0

So, why is the code complicated with drive and olddrive? If we switch
repeatedly from forward to reverse drives, there is a tendency for the H-bridge
transistors to overheat. Here a zero is output between changes of sign.

Nevertheless, there is the disadvantage that for most of the time maximum
drive is applied. Is there a way to reduce the drive when full drive is not
needed?

72 GAINING EXPERIENCE

3.4.4 The Proportional Band

The previous strategy resulted in the motor being connected to the power
supply at all times, resulting in a substantial power drain even when there is
no disturbing torque and the demanded speed is zero.

The current drain could be reduced if the motor were switched off when
“near” the target. There would, in effect, be a “gap” where there is zero
drive.

Add a line to the program above:

CONST gap = .05

Then change the “middle” lines to

IF vdemand > v + gap THEN
 drive = 1
ELSEIF vdemand < v - gap THEN
 drive = 2
ELSE
 drive = 0
END IF

This will reduce the current drain—indeed, it will be zero when zero speed
is demanded—but the velocity can be in error by an amount “gap” with no
corrective action. With an on off controller, how can we get proportional
action to fi ll in the gap? Many commercial power amplifi ers provide a pro-
portional mark-space output—at great expense. We can construct a mark–
space controller in software.

We set up a variable g that will shuttle to and fro across the gap in a
triangular wave, as follows:

g = g + dg
IF g > gap THEN dg = -.1 * gap
if g <= 0 THEN dg = .1 * gap

Now we change the “engine room” lines again, to

IF vdemand > v + g THEN
 drive = 1
ELSEIF vdemand < v + g - gap THEN
 drive = 2
ELSE
 drive = 0
END IF

“PROFESSIONAL” POSITION CONTROL 73

dg must be set to 0.1 * gap at the top of the program, after gap is defi ned.
After 20 times round the loop, g cycles through its range of values. If the
velocity error is exactly zero, the drive will be set to zero all the time. If
vdemand - v = gap/2, the drive will be positive for half the time. If it
is greater than gap, the drive will be positive all the time.

We have a mark–space ratio that can increase the drive in steps of 10%,
which is dg’s proportion of gap. If dg is made much smaller, the cycle time is
longer and the motor buzzes accordingly.

3.4.5 Position Control

By now you will have applied velocity control to the motor and tacho of the
position control experiment, having carefully removed the belt from contact
with the motor pulley.

Instead of using the keyboard to set the velocity demand, we can use the
10-turn potentiometer mounted on the second pulley.

Connect the potentiometer output to the input of ADC channel 1. The
software function should now return a value that varies from −1 to 1 as
the potentiometer is turned from end to end:

CONST port= &H378
CONST tmax=4
CONST gap=.05

dg = .1 * gap
k = 1

SCREEN 12
WINDOW (0,-1) - (tmax,1)

dt = .001 ‘or a smaller value to suit the display rate
DO
 a$ = INKEY$
 v = 5 * ADC(0) ‘The tacho voltage is rather small
 x = ADC(1)
 vdemand = -k * x
 g = g + dg
 IF g > gap THEN dg = -.1 * gap
 IF g <=0 THEN dg = .1 * gap
 verror = vdemand - v ‘more about this later
 IF verror > g THEN
 OUT port, 1
 ELSEIF verror < g -gap THEN
 OUT port, 2

74 GAINING EXPERIENCE

 ELSE
 OUT port, 0
 END IF
 t = t + dt
 IF t > tmax THEN t = 0
 PSET (t, v)
 PSET (t, x), 14 ‘yellow
LOOP UNTIL a$ = “q”
OUT port, 0

As a consequence of the way we have used g and gap, we should always have
one or more periods of zero drive before a drive reversal, so we can dispense
with drive and olddrive.

Run the program. The potentiometer will control the speed. If the polari-
ties are correct, the motor should spin in the opposite sense to the way you
turn the potentiometer shaft. If this is not the case, reverse the supply con-
nections to the potentiometer.

Now switch off the power and reconnect the drive belt. Beforehand, be
sure that the speed control is “good”.

Cautiously increase the voltage of the power supply that runs the motor.
As the motor starts to move, it backs off the potentiometer shaft to zero—you
have achieved position control.

The next step is to put back a demand signal, this time a position
demand:

if a$ = “.” THEN demand = demand + 0.1
if a$ = “,” THEN demand = demand - 0.1
if a$ = “0” THEN demand = 0

The vdemand line is now

vdemand = k * (demand - x)

Tapping a key will step the demand along the potentiometer travel. Pressing
the 〈0〉 key will return the demand to zero, so that a larger step response can
be seen.

Experiment with various values of k and also gap, trying to get a fast
response without overshoot.

Now put the control system to its real test. How far can the trolley’s posi-
tion be pushed away from the target before full corrective drive is applied?
With linear feedback tuned to avoid overshoot, the control might be
rather “soggy.” With a nonlinear strategy, something much “crisper” can be
achieved.

Try setting gap to zero—but make the test very brief, since the power
transistors will be getting hot. This reverts to bang-bang control, and the

“PROFESSIONAL” POSITION CONTROL 75

system will be very stiff indeed, although the motor will buzz and the current
will be high. Increasing gap will make the performance “quieter” at the
expense of a softer response to disturbances.

3.4.6 Nonlinear Correction

An overshoot occurs if the motor approaches the target “too fast to stop.”
Drive saturation plays an important part in the performance. Even when the
linear parameters have been tuned for a heavily damped response for small
defl ections, a larger disturbance can cause it to overshoot badly.

An easy answer is to put a limit on the demanded velocity. Now the system
will approach the target at constant speed, however large the defl ection. By
setting this speed limit lower, the time constant of the fi nal settling response
can be made faster while still avoiding an overshoot. There is always a com-
promise to be made.

Add the line at the top of the program

vmax = 0.1

and after vdemand is defi ned, add the lines

IF vdemand > vmax THEN vdemand = vmax
IF vdemand < - vmax THEN vdemand = -vmax

Now experiment by varying the values of k, vmax, and gap.

3.4.7 Estimating Velocity

Suppose that we have no tacho signal. How can we stabilize the system?
In the ball-and-beam experiment, you produced an estimate of the ball’s

velocity in real time. The play routine was used to control a precise time
increment, a necessary part of the process.

We used the property that a highpass fi lter can be expressed as the difference
between the original signal and the output of a lowpass fi lter as follows:

Ts Ts Ts1 1 1 1+() = − +()

In other words, to estimate the velocity, we construct a “lagged” version of
the position and subtract it from the position. We can set up a “chicken and
egg” situation where we use vest to update the lagged version and in turn
calculate vest from the lagged version

vest = (x - xslow) * kt

while the lagged position is updated by

76 GAINING EXPERIENCE

xslow = xslow + vest * dt

If the variables are updated at intervals dt, the time constant of the lag will
be 1/kt seconds, so if kt = 20, it is 50 ms.

Add a line at the top of the program:

CONST kt = 20

Now the scale factor of vest is unity, so that a value of 1 indicates that x is
changing at 1 unit per second. In contrast, v was scaled by an arbitrary factor
determined by the tacho.

The gain and the value of vmax you must use with vest will differ consider-
ably from the values you chose when using v. You will fi nd that vest would go
off screen if displayed at the same scale as v; so display vest/20 instead.

Our previous way of getting a timed response was by inserting a PLAY
command into the program loop, slowing down the whole process. We would
instead like to run the mark–space calculation as fast a possible. QBasic
allows us to set up an “interrupt” so that vest will be updated in time
“stolen” from the main loop every 10 msec.

Since the earliest days of computers, interrupts have been a fundamental
part of the system. When your output device was a teletype, tapping away at
10 characters per second, you did not want to waste time waiting for it and
instead preferred to get some more computing done between taps.

So, every time the interface is ready for another character, it interrupts the
computer. The values in the registers used for the task in hand are tucked away
safely, then the machine attends to loading the code of the next character to be
printed and outputting it. Then it must retrieve and restore the values of the
registers and perform an “interrupt return.” Modern peripherals may be much
faster, but they still operate at a snail’s pace compared with computing speeds.

In just the same way, QBasic allows us to play music in the background,
interrupting us for some more notes when the tune is coming to an end. If we
set the play rate to the highest speed and supply just one note at a time, we
will receive interrupts at intervals of 0.012 s.

Near the top of the program, the command

PLAY “mbl64t255”

sets the fastest playing speed and also tells the music to play in “background
mode.”

Add some further instructions just before the loop begins:

ON PLAY(1) GOSUB rates
PLAY ON

PLAY “cde”

“PROFESSIONAL” POSITION CONTROL 77

These tell the software that when the number of notes queued for playing
falls to 1, there should be an interrupt causing a subroutine call to the label
rates. The third line “sets the alarm clock” with three notes to play.

Now at the end of the program, add a line

END

so that program execution cannot “fall through” to the subroutine.
Now for the subroutine itself. This is added after the END:

rates:
vest = (x - xslow) * kt
xslow = xslow + vest * dt
PLAY “n0”
RETURN

Add one last line in the heart of the control loop to display the estimated
velocity in red, among the other PSET lines:

PSET (t, vest / 20), 12

Now run the program again. Remember that the actual control program is
exactly as before—we are using “real” velocity and not vest.

As you demand steps of movement, the tacho velocity is shown in white.
The estimated velocity is shown in red. If you have “got it right,” the values
in the constant speed section will be the same size. Try values other than 20
to scale vest to match the traces.

When you are at last satisfi ed with your estimate of the velocity, you can
try it in the control loop. In the verror = line, replace v with vest/20 (or
the value you found for the best match). Now your control depends on esti-
mated velocity, not on the tacho.

Control will be a bit more wobbly, overshoots will be harder to avoid, and
the control may have to be softer. Once more, experiment with k, vmax, and
kt to see what you can achieve.

3.4.8 Discrete-Time Control

There is just one more step to try. We will move the entire control loop into
the interrupt routine. Now the top-level program merely “twiddles its thumbs”
in a loop. Every 10 ms, it is interrupted to allow the ADCs to be measured,
the feedback to be calculated, and the drive to be output.

The mark–space drive behavior given by gap would become a nuisance if
g were changed only every 10 ms. Its cycle through 20 steps would take 200 ms.
The system would vibrate at fi ve cycles per second.

We can instead calculate a drive signal u

78 GAINING EXPERIENCE

u = (vdemand - v) * kv

inside the interrupt routine, but let the mark–space gap part of the routine
run much faster in what is left of the main program. With a value of 1.0 for
gap, the drive will be positive all the time if u is greater than 1, will be nega-
tive all the time if u is less than −1, and will give a proportional mark–space
ratio in between. The result is like this:

‘CONSTants required for the ADC routine go here

CONST port= &H378 ‘(might be &H278)
CONST tmax= 4
CONST gap= 1
dg = .1 * gap
CONST vmax = 0.1

k = 1
kv = 10
kt = 10

SCREEN 12
WINDOW (0,-1) - (tmax,1)

PLAY “mbl64t255”
dt = .01 ‘Interval for this playing rate

ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”

DO
 a$ = INKEY$
 if a$ = “.” THEN xdemand = xdemand + 0.1
 if a$ = “,” THEN xdemand = xdemand - 0.1
 if a$ = “0” THEN xdemand = 0
 g = g + dg
 IF g > gap THEN dg = -gap/10
 if g < 0 THEN dg = gap/10
 IF u > g THEN
 OUT port, 1
 ELSEIF u < g - gap THEN
 OUT port, 2
 ELSE
 OUT port, 0
 END IF

“PROFESSIONAL” POSITION CONTROL 79

LOOP UNTIL a$ = “q”
PLAY OFF
OUT port, 0
END

rates:
v = ADC(0)
x = ADC(1)
vest = (x - xlsow) * kt
xslow = xslow + vest * dt
vdemand = k * (xdemand - x)
IF vdemand > vmax THEN vdemand = vmax
IF vdemand < - vmax THEN vdemand = -vmax
u = (vdemand - v) * kv ‘(or later try vest)
t = t + dt
IF t > tmax THEN t = 0
PSET (t, v)
PSET (t, x), 14 ‘yellow
PSET (t, vest / 20), 12 ‘red

PLAY “n0”
RETURN

FUNCTION adc(chan%)

‘ The code for the ADC routine goes here

END FUNCTION

Experiment with various values of k, kv, and vmax.
Now try using vest instead of v for the control by changing the line

suggested.

3.4.9 Summary

Now you have seen how a motor can be switched by one computer output line
if it runs in just one direction, or by two lines with the aid of an H-bridge if
it is to be bidirectional.

You have seen that a tacho velocity sensor enables the position control to
be very stiff, as would be required by a machine tool positioner. You have
seen that without such a tacho, a softer control is achievable with the use of
a digital fi lter to estimate the velocity.

You have seen that the gain can be expressed in terms of a proportional
band and that this proportional drive can be achieved as mark–space modula-
tion by means of further software.

80 GAINING EXPERIENCE

In short, you have seen that a motor, an amplifi er, and two transducers can
be turned into an industrial-grade position control system with a few simple
lines of software.

3.5 AN INVERTED PENDULUM

In the previous experiment, a position control loop has been closed after some
cautious tests. A variety of nonlinear strategies have been investigated to
obtain the performance expected of an actuator such as a robot axis.

Most of the feedback decisions were made empirically, experimenting to
fi nd values that would give a swift response with no overshoot. For the control
of an inverted pendulum, we can also follow an empirical approach. However,
we must avoid the mistake of thinking that we can add the pendulum control
on top of the algorithm that we have found for position control. You may fi nd
some of the feedback coeffi cients surprising.

3.5.1 Skeleton Software

We can strip out the control algorithm from the position control software, to
leave the following skeleton:

‘Constants required for the ADC routine go here

CONST port= &H378 ‘(might be 278)
CONST tmax= 4
CONST gap= 1
dg = .1 * gap
CONST vmax = 0.1

k = 1
kv = 10
kt = 10
SCREEN 12
WINDOW (0,-1) - (tmax,1)

PLAY “mbl64t255”
dt = .01 ‘Interval for this playing rate

ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”

DO
 a$ = INKEY$
 if a$ = “.” THEN xdemand = xdemand + 0.1

 if a$ = “,” THEN xdemand = xdemand - 0.1
 if a$ = “0” THEN xdemand = 0
 g = g + dg
 IF g > gap THEN dg = -gap/10
 if g < 0 THEN dg = gap/10
 IF u > g THEN
 OUT port, 1
 ELSEIF u < g - gap THEN
 OUT port, 2
 ELSE
 OUT port, 0
 END IF
LOOP UNTIL a$ = “q”
PLAY OFF
OUT port, 0
END

rates:
v = ADC(0)
x = ADC(1)
vest = (x - xlsow) * kt
xslow = xslow + vest * dt
‘The control goes here, with a line u = . . .

t = t + dt
IF t > tmax THEN t = 0
PSET (t, v) ‘white
PSET (t, x), 14 ‘position in yellow

PLAY “n0”
RETURN

FUNCTION adc(chan%)

‘ The code for the ADC routine goes here

END FUNCTION

3.5.2 The Pendulum and Tilt Sensor

You might have noticed the tubular rod projecting from the front of the new
position control experiment. This is a tube in which a pair of crossed Hall
effect sensors are mounted, forming the pivot for the pendulum. Simple
rubber O-rings restrain the pendulum mounting and prevent it dropping
off.

AN INVERTED PENDULUM 81

82 GAINING EXPERIENCE

The pivot of the pendulum takes the form of a mounting for a pair of
magnets, as shown in Figure 3.9. This slides onto the sensor tube. Into it can
be screwed a variety of lengths of lightweight aluminum tubing.

The sensors are linear Hall effect sensors, chips the size of a small transis-
tor with three connections. The UGN3504 is now obsolete, but equivalents
such as the A1302 are available from Allegro. Supply lines of 5 and 0 V are
connected to two of these, while the third delivers an output voltage that
varies either side of 2.5 V in proportion to the normal component of the mag-
netic fi eld.

With two sensors, both sine and cosine signals are available. For calcula-
tion and simple control, we can take the sine to be the same as the angle in
radians over the small relevant range. However, we also have the information
we need it we wish to swing the pendulum from hanging down to standing up.

The new version of the experiment uses the single-chip ADC described in
detail in Section 5.3.4. Both input and output are handled by the printer port
connection, while the signals from the Hall effect sensors are connected to
inputs ADC2 and ADC3, pins 3 and 4 of the MCP3204 chip (see schematic
in Fig. 3.10).

Add the following lines in the skeleton program above, in the subroutine
rates:

N S

N S

Figure 3.9 Pivot and magnets.

tilt = ADC(2)
PSET (t, tilt), 10 ‘Plot tilt in green

Make sure that the motor drive supply is switched off, and run the program.
Rotate the sensor—swing the pendulum about—and note that the sensor
voltage (shown in green) varies over a reasonable range. You may need to
swap the sensor connections, so that ADC(2) represents the sensor that gives
a value near zero when the pendulum is upright. The signal should move
positive as the pendulum is tilted to the right. If it does not, slide the mount-
ing off the pivot, reverse it front to back and replace it.

To centralize the tilt reading, we have to subtract the value given when the
pendulum is straight up. Change the tilt= line to

tilt = (ADC(2) - tilt0)

But how do we get the value of tilt0? After the dt=.01 line at the top of
the code, add

tilt0 = adc(2)

and make sure that you balance the pendulum before running the program.
Rotate the pendulum and check that the value swings equally positive and

negative.

3.5.3 Finding the Tilt Rate

Now we use the interrupt routine again to estimate the tilt rate from the tilt
signal. Since we are using a substantial gain already, this estimate might be
rather noisy:

M
C

P3204

1ADC0

ADC1

ADC2

ADC3 Pin 1

Pin 14

Pin 13

Pin 16Pin 25

0v

0v
0v

5v

5v

Printer

port pins

CLK

Dout

Vref

VDD

Din

SHDN

AGND

Tacho

10K

10K

Hall effect 1

Hall effect 2

10-turn
potentiometer

Figure 3.10 Circuit and printer port connections.

AN INVERTED PENDULUM 83

84 GAINING EXPERIENCE

tiltrate = (tilt - slowtilt) * 20
slowtilt = slowtilt + tiltrate * dt

Once again the constant 20 defi nes a time constant of 50 ms.
Add these lines to the rates routine, and also add

PSET (t, tiltrate), 12 ‘red

among the other PSETs to display it.
Now we have enough variables to hand to try to control the system.

3.5.4 Building a Strategy

Start with the skeleton program with the modifi cations of the last section.
Before going any further, we should make sure that the polarities are correct.
Run the program, but be sure to keep the motor power supply turned off.

Move the trolley to the right by hand, and make sure that the yellow trace
rises on the screen. Move it swiftly a little way to the right and make sure that
the white velocity trace also rises. Lean the pendulum to the right—the green
trace should rise. Hold the pendulum straight up, and the green trace should
be central. Wave the pendulum to the right, and the red tiltrate trace
should be positive for a short burst.

If all is well, we are ready to begin.
The whole feedback exercise comes down to fi nding a suitable expression

for the u = line. We can start with

u = 10 * tilt

If the pendulum tilts to the right, the trolley moves to the right. This implies
that the trolley will move to try to hold the pendulum upright.

Hold the pendulum high up, with the trolley in the center of the track.
Being careful to keep your hands clear of the trolley, turn the motor power
supply voltage setting down to zero, switch on, and increase the volts steadily
to 10 or so.

You will see that this feedback arrangement acts as a sort of position
control. As you move the top of the pendulum to the left, the trolley moves
to follow it. There is no damping, however, so the response will be fairly oscil-
latory. We should add some damping. Do this by changing the vital line to

u = 10 * tilt + 10 * tiltrate

By adjusting the two coeffi cients, you can obtain a swift and agile response.
Try releasing the pendulum briefl y—it should remain upright, but the trolley
will drift to the left or right until the pendulum hits the stops.

It is time to add feedback to keep the trolley in the center of the track. But
should we add positive or negative position feedback? Change the line again
to

u = a * tilt + b * tiltrate + 10 * x

where a and b are the numbers you have chosen by trial and error.
Hold the pendulum again and power up. Now you will see that as you move

the pendulum left and right, the trolley follows as before—but with a differ-
ence. It moves rather more than you move the pendulum, so that the pendu-
lum leans inward—or at least it should if you have the coeffi cients right.
Adjust the coeffi cient of x so that the pendulum rotates about a point roughly
twice as high as the length of the pendulum.

Now give the pendulum another solo run, starting near the center. The
trolley will “swing” to and fro with increasing amplitude. Catch it before it
hits the ends.

Now add yet another term, some constant times v. When you have the right
coeffi cient, the “swing” will be damped and the pendulum will “rest” near
the centre. “Rest” might not really be the right word, since the trolley will
jitter to and fro.

You can instead use a multiple of vest. It will actually give a smoother
response. So now the only sensors used are the potentiometer measuring x
and the sensor measuring tilt. The other variables are deduced from
these.

We can go a little further by replacing x in the u= line with (x − xdemand).
As the keys are tapped, the trolley will obediently wobble to the left or right
as commanded.

You have followed a systematic but empirical process to arrive at feedback
coeffi cients that will stabilize the pendulum. It might have been surprising at
fi rst that positive, rather than negative feedback had to be used for the trolley
position. In a later chapter, the equations of the systems will be analyzed and
your results will be explained.

Another exercise will involve simulating the system. At present we know
very few of its parameters, so you should take the opportunity now to measure
some.

3.5.5 Measuring the System Parameters

To make an accurate mathematical model of the system, we need to measure
a number of parameters. By modifying some of the earlier programs, we can
let the computer do most of the hard work for us.

The key parameter is the acceleration of the trolley under full drive.
Another is the effect of the velocity on the acceleration.

Which units should we use to measure the position with? The most conve-
nient measure is in terms of the potentiometer voltage. Since we have scaled

AN INVERTED PENDULUM 85

86 GAINING EXPERIENCE

the ADC output to the range −1 to 1, we will take this range to be two units
of position.

Next we need to have some absolute scale of time. We must use the inter-
rupt method in preference to one that relies on the speed of a program loop.
The following program will calibrate the interrupt process to give the correct
value to use for dt:

CLS
PRINT “Calibrating dt - please wait fi ve seconds”

PLAY “mbl64t255”
ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”
t = TIMER
n=0
DO
LOOP UNTIL n>=500
PLAY OFF
PRINT “Use dt =”;(TIMER - t)/n
END
rates:
n = n + 1
PLAY “n0”
RETURN

It simply uses the TIMER function (press 〈F1〉 to check it out) to measure the
duration of 500 interrupts, which we know to be in the region of fi ve seconds.

Now we need a program to measure acceleration. To test the acceleration,
we fi rst ask for the trolley to be moved by hand to the left hand end of the
track. When we press 〈space〉 for “go”, the trolley accelerates under full drive.
When it reaches the center, the drive is removed and friction brings the trolley
to a halt.

Load in the skeleton you used in Section 3.5.1 and delete even more, then
enter the new code. Edit the program that follows to use the dt value that
you have just found:

‘CONSTants required for the ADC routine go here

CONST port= &H378 ‘(might be 278)
CONST tmax= 1 ‘Note the change of value
SCREEN 12
WINDOW (0,-1) - (tmax,1)
PLAY “mbl64t255”
dt = .01 ‘Change this to the value you have found

ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”
‘------New code from here on
OUT port, 0
PRINT “Move the carriage to the left end and press
<space>”
DO
LOOP UNTIL INKEY$ = “ “ ‘Wait for key
x0 = ADC(1)
t=0
OUT port, 1 ‘Off we go
DO
 PSET (t, x), 14
LOOP UNTIL x>=0 ‘When we get to the middle
t1 = t ‘make a note of the time
x1 = x ‘and check the position
OUT port, 0 ‘switch off and coast to a halt
t=0
DO
 PSET (t, x), 14
LOOP UNTIL t >.9 ‘Should stop before 0.9 seconds
x2 = x ‘How far did it coast?
a = 2 * (x1 - x0) / (t1̂ 2) ‘using s=1/2 a t^2
b = a * (x1 - x0) / (x2 - x1) ‘v^2 = 2 a s1 = 2 b s2
PRINT “Acceleration = “; a
PRINT “Deceleration = “; b
‘----End of new code
DO ‘Leave the information on the screen
 a$ = INKEY$
LOOP UNTIL a$ = “q”
PLAY OFF
OUT port, 0
END

rates:
x = ADC(1)
t = t + dt
‘Point A
PLAY “n0”
RETURN

FUNCTION adc(chan%)
‘ The code for the ADC routine goes here
END FUNCTION

AN INVERTED PENDULUM 87

88 GAINING EXPERIENCE

So, that gives us some numbers. What do they mean?
The fact that the stopping distance is of the same order as the run up sug-

gests that the major slowing effect is not viscous drag but friction. On this
assumption we can model the trolley with two equations:

dx dt v

dv dt cu

=

= − friction

where u is +1, −1 or zero according to the drive setting. Friction will be of
constant magnitude, multiplied by the sign (±1) of the velocity. Its magnitude
will be given by the deceleration that we have just found.

Since the drive has to act on top of the friction, the constant c will be the
sum of the acceleration and the deceleration. We are now in a position to
make a mathematical model for the trolley movement.

At the point marked A in the rates subroutine, add

vm = vm + (c * u - friction *SGN(vm)) * dt
xm = xm + vm * dt

substituting the values you have found for c and friction.
Now we have to introduce u and set the model initial conditions.
At the command OUT port, 1, insert

u = 1
xm = x

and at the OUT port, 0 command, insert

u = 0
xm = x

Finally, we must display the model position by adding

PSET (t, xm), 12

next to the existing PSET command. As a result, the new program will show
the actual and modeled positions superimposed.

For a more complete model, we need to know more about the pendulum.
We can measure the vital parameter with minimal technology. Hang the pen-
dulum upside-down. Give it a swing and measure the period of oscillation.

3.5.6 Final Touches

The program can be polished up for demonstration purposes. The datum
value can be written to a fi le on disk, so that the pole does not have to be
balanced at the start.

The original version of the experiment has brackets at the end, forming
stops near the midheight of the pendulum, while there are limit stops on the
angle to which it can topple. The program can start by applying velocity
control to run the trolley gently toward the end. As the pendulum is pushed
past the upright position by the stop, the mode switches to balance control
and the pendulum is balanced. You can see this in action in a video fi le to be
found at http://www.essmech.com/3/5/6.htm.

A simple test on the tilt angle will detect whether the pendulum has
toppled and enable the routine to erect it and start again.

On the new version that is just being commissioned (in 2005), the pendu-
lum can swing freely in a complete circle. The trick now is to erect it from a
hanging position by building up oscillations until it can be “caught” at the
top.

AN INVERTED PENDULUM 89

91

4
Introduction to the

Next Level

A few basic principles and some experimentation can get you a long way in
mechatronics, but the time comes when they must be backed up by mathe-
matical theory. That is not to deny that the empirical approach will get you
much further than the theory on its own.

I have tried to feature theory that will actually be useful, rather than
mental party tricks that are only really relevant to answering examination
questions. We cannot avoid differential and difference equations. They are
the essential substance of the things that we are trying to control. We must
be able to spy out the state variables that defi ne the behavior of the system
and then derive state equations to describe them.

One vital use for the differential equations is to enable us to simulate the
systems in software and try out the algorithms, whether based on theory or
pragmatism, to obtain an early verdict on the likelihood of the success of the
outcome. But unless the algorithm is tried out on a real system, simulation is
a mere mental pastime.

We have to include methods of testing for stability, for despite the legion
of thermostats happy in their limit cycles, there are many systems where true
stability is essential. Transfer functions certainly have their uses, but they are
just one piece of the jigsaw puzzle and not an end in themselves. When we
use mathematical shorthand to put our state equations into matrix form,
we fi nd ourselves led into the world of transformations and eigenvalues and
we need to brush up on a mathematical toolkit.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

92 INTRODUCTION TO THE NEXT LEVEL

When we step back to the mechanical reality of moving parts, accelerations
and forces, we again fi nd that the coordinate geometry is leading us down the
matrix path. Rotations become tensors, and the articulation of a robot arm
involves a chain of affi ne transformations, performed very neatly by a few
matrix software operations.

The mechatronic engineer should not be in a hurry to dismiss electronic
design too lightly, thinking that purchasing ready-made circuitry is an easy
answer. The ADC chip that costs under $10 will fi nd its way into a board
marketed for many hundreds of dollars, probably with elaborations that make
it diffi cult to do the simple operations you require. The vendor of the board
will offer you a FIFO buffer that can hold hundreds of samples. These are
useless to you for control; you need just one value of the variable, measured
as recently as possible. You may have to put your own board together!

The ability to throw a circuit together around an operational amplifi er will
be another essential skill. Once again, a chip costing a few cents will usually
be packaged in a smart box with a huge price tag, and there is no guarantee
that you can actually fi nd the product that does what you need.

Your circuitry skills will be tested even further if you intend to embed your
own microcomputer in your design, rather than exploiting a PC. Think long
and hard before you select a particular processor. The wide variation does
not just cover price, you must also consider the sizes of program and working
memory, number and type of interfaces, and the availability of cross-support
software. Many devices such as the PIC have a huge hobbyist following, with
an abundance of freeware available on the Web. Others can include bus
systems aimed at industrial applications such as the motor industry, but these
too may have excellent free cross support.

4.1 THE www.EssMech.com WEBSITE

There are things that a book simply cannot achieve, such as real-time simula-
tions, interactive examples, and movie illustrations. Those shortcomings are
easily overcome by mounting a Website for readers of the book.

4.1.1 Examples and Simulations

There is nothing like trying out a simulation in real time to see the problems
that a control system can really present. But what is the easiest way to present
the simulation experience to the reader? Packages seldom come cheaply. They
also present problems all of their own in the “learning curve” requiring time
to use them to their full advantage.

There is a graphics computing environment already installed on your
computer. It is hidden within the browser. It allows you to enter or modify
code displayed in a text area of a Web page and execute it at the click of a
button.

THE www.EssMech.com WEBSITE 93

The language is JavaScript, and it is used here with a simple Java “applet”
that puts all the graphic tools within reach. With the title Javascript On-Line
Learning Interactive Environment for Simulation, examples have already
been on show for some time at http://www.jollies.com/.

Although the code looks very much like C, there are some subtle differ-
ences. Nevertheless, it is easy to edit or create new code for the Jollies pages
both for simulations and for graphic image processing.

Although the Jollies are probably the easiest route by which to approach
the examples, many on the EssMech Website are duplicated in QBasic or
QuickBasic (the syntax is the same) and in Visual Basic as well.

You will fi nd other code there, too. There are examples of assembly code
for embedded microcomputers and “solution” code for the laboratory exer-
cises. That is in addition to some packages to help with vision examples and
experiments and the occasional movie of mechatronics in action.

4.1.2 Finding the Code

If you simply enter the URL of the Website, you will fi nd pages that tell you
about the book, with links to the examples.

To fi nd a direct path to each example, you must add the subsection number
in a slightly cryptic way as follows; The example for this subsection, 4.1.2,
would be linked at http://www.essmech.com/4/1/2.htm. Try it! You can also
try http://www.essmech.com/4/1/ to see an index of examples in the whole of
Section 4.1.

95

5
Electronic Design

Knowing nothing more than the rudiments of circuit theory, it is possible to
use catalog components to design amplifi ers, fi lters, discriminators, and even
an elementary analog-to-digital converter.

Those rudiments must include knowledge of how to calculate values for
the combination of passive components (resistors, capacitors, inductors) in
series and parallel and the analysis of circuit loops by Kirchhoff’s methods.
Familiarity with Norton and Thevenin’s theories would also help.

The catalogs are full of semiconductor devices, many costing no more than
10¢ and few costing more than $5. They range from elementary amplifi ers
and logic circuits, through comparators, counters, multichannel ADCs, power
transistors, magnetic and optical sensors, and many of the embeddable
microcomputers.

In the same catalogs you are likely to fi nd plug-in systems to solve your
problems. These, however, are likely to cost a hundred times as much. Being
designed to address the problems of a hopefully large client base, it is unlikely
that they will be the best fi t for your specifi c application.

It is well worth gaining expertise in putting your own circuits together.

5.1 THE RUDIMENTS OF CIRCUIT THEORY

Circuits can be arranged as networks, as in Fig. 5.1, nodes joined by meshes
to form loops. The laws and equations can be expressed in many ways, but
can be summed up as described in the following paragraphs.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

96 ELECTRONIC DESIGN

Each node has a voltage with reference to the node 0 that is taken as
reference.

Each mesh carries a current between nodes, taking the direction and sign
into account. The fi rst and only rule states that the sum of all currents at each
node must be zero. In other words, all currents must “come from somewhere.”
(Kirchhoff’s “second rule” is a simple consequence of assigning a voltage to
each node.)

To analyze the circuit, we must therefore have some way of relating the
current in a mesh to the difference between the voltages of the nodes at its
ends. We have a number of primitive components for this analysis:

1. A Voltage Source. This will be a voltage that contributes to the voltage
difference across the mesh regardless of the current passing through it.

2. A Current Source. Rather more aggressive, perhaps, the current source
forces its current in the mesh regardless of the voltage across it. Clearly
the resulting equation will express the voltage across the mesh in terms
of this current, rather than vice versa.

3. Resistance. Ohm’s law states that the voltage across the resistance is
proportional to the current through it, but this is more a rule of thumb
than a law of physics. With a wide variation in current resulting in tem-
perature changes in the components, nonlinearities are likely to become
apparent. As soon as semiconductors are involved, the nonlinearities
become important.

Resistance “contaminates” most other components, so that they come
in combination with it. A voltage source is seldom “pure,” but appears
to have a resistance in series with it. A current source will usually appear
to have a resistance across it.

V1

V3

V4

V2

0

Figure 5.1 Circuit network.

4. Capacitance. Capacitance has a somewhat different nature. It involves
time. The current through a capacitor is proportional to the rate of
change of the voltage across it, so the equation for a mesh is then likely
to turn out to be a state equation.

5. Inductance. Inductance also involves time, but this time the voltage
across the inductance is proportional to the rate of change of the current
through it. Once again, an inductance is seldom “pure” but usually has
some resistance associated with it.

Electricians have assembled a set of rules for combining components in series
and parallel. When current passes through two resistors in series, the voltage
across them is, of course, the sum of the two individual voltages. The com-
bined resistance is thus the sum of the two resistances:

R R R= +1 2

When they are connected in parallel, both resistors have the same voltage
across them and pass the sum of the two individual currents:

1 1 1

1 2R R R
= +

Using these two simple rules, a circuit consisting only of resistors can be
“crunched” fi rst by working out a single resistance for each mesh, then com-
bining meshes in parallel.

Thevenin’s theorem states that a circuit, however complicated, can be
reduced to a single resistance in series with a single voltage source. Norton
turns this on its side and says that this is equivalent to a single resistance (of
the same value) in parallel with a single current source. Both theories, of
course, depend on the circuit components being linear.

Flushed with their success at manipulating resistors, electricians are keen
to represent capacitors and inductors in the same form. Often their calcula-
tions will involve a single supply frequency, which they multiply by 2π to get
the angular frequency, ω. The sines and cosines of the waveform can be
expressed as the real and imaginary parts of e jwt, and every differ entiation
will give rise to a multiplying factor of jw. They call an inductance L an
impedance of Ljw and crunch it just as if it were a resistance.

The ratio of output to input voltages of a network is likely to involve a
spattering of (jw) symbol, and the result is called a transfer function. Their
euphoria with transfer functions is carried over into their dealings with control
systems, and their infl uence is to blame for the tradition of treating transfer
functions as the foundation for the teaching of control theory.

One particular form of network of particular interest is the two-port or
four-terminal network (Fig. 5.2). The two output terminals can be tied to the

THE RUDIMENTS OF CIRCUIT THEORY 97

98 ELECTRONIC DESIGN

two input terminals of another such network; indeed, a whole chain of net-
works can be linked to form a complex fi lter.

Four variables are involved, the input voltage and current and the output
voltage and current. The equations linking them can be found by “network
crunching,” or more simply by building state equations. Consider the circuit
of Figure 5.2.

The state variables are V, the voltage on the capacitor; and i, the current
through the inductor. The voltage across R1 is Vin − V, so the current through
it is

V V
R

in −
1

The current through the inductor is, of course, just i, but is directed away
from the capacitor. The currents arriving at the top node of the capacitor, includ-
ing the current passing through the capacitor, must sum to zero. The current
fl owing into the capacitor is equal to C times its rate of change of voltage:

C
dV
dt

V V
R

i= − −in

1

Now the current through R2 will be i − iout, and the voltage across it is

R i i2 −()out

so we can fi nd the voltage across the inductor. The equation that defi nes an
inductance gives us

L
di
dt

V R i i= − −()2 out

and there we have our two state equations. Everything on the righthand side
is either a state variable or an input—note that both Vin and iout are inputs, as
far as this system is concerned.

R1

R2Vin
VoutV

C

L
i

Figure 5.2 Four-terminal network.

5.2 THE OPERATIONAL AMPLIFIER

This type of integrated circuit seems as versatile as the transistor itself, but
allows amplifi er and signal conditioning circuits to be designed to a “grand
scheme” with few of the niggling details of biasing that transistors present.

The output voltage Vout (see Fig. 5.3) is a large number of times the differ-
ence between the two input voltages—where the large number may typically
be 100,000. But it is most unlikely that you will want such a high gain in your
fi nal circuit. The gain is reduced when you apply feedback around the ampli-
fi er, in exchange for certainty about the closed-loop circuit parameters.

Modern op-amps (operational amplifi ers) have a very high input imped-
ance. That means that when you apply a voltage to the input, practically no
current at all is accepted. They also have a very small “input offset voltage,”
the actual difference in voltage between the inputs when the output is zero.

5.2.1 Virtual Earth

A large family of applications use a “virtual earth” concept, where the non-
inverting input of the amplifi er is connected to ground, or to a constant refer-
ence voltage.

Now let us start to analyze the circuit, even before we decide what the
circuit will actually consist of. Since

V A V Vout = −()+ −

and since we have grounded V+, we know that

V V A− = − out

and since A is very large, that will make V− virtually zero, unless the amplifi er
is saturated. Hence the term “virtual earth.”

Now, for example, if we connect a resistor of 100 kΩ between Vout and V− (as
shown in Fig. 5.4), both Vout and V− will be zero. Let us connect a second
resistor to V−, this time of value 10 kΩ, and apply one volt to the end of it.
What does this do to V−?

Vout

V+

V–

Figure 5.3 Operational amplifi er.

THE OPERATIONAL AMPLIFIER 99

100 ELECTRONIC DESIGN

As soon as V− is pulled away from zero volts, Vout changes to try to pull it
back. By taking a value of −10 V, the two resistor currents cancel out and
balance is restored. We have made an amplifi er with a gain of −10; thus, for
every volt applied at the input to the 10 kΩ resistor, the output will change by
−10 V.

You can look on the schematic rather as a seesaw (Fig. 5.5), with one side
of the plank 10 times as long as the other.

Let us now connect an additional 10 kΩ resistor to V− and apply −2 V to it.
Now the sum of all three currents at the V− junction must be zero, while the
voltage there remains at zero. The output must change to +10 V. We have
devised a way to add input signals together, although those signals do not “see
each other” since they are only joined via a point that remains at zero volts.
The virtual-earth connection has become a “summing junction” (see Fig.
5.6).

We can add signals in unequal proportions by varying the values of their
corresponding resistors. If we want to subtract a signal, we can fi rst invert it
using an operational amplifi er with an input resistor equal to its feedback
resistor.

If we replace the feedback resistor with a capacitor, we get an integrator
(Fig. 5.7). As before, the currents at the summing junction must add to zero.
Now the equation that describes the current i in a capacitor is

i C
dV
dt

=

Vin Vout
10K 100K

Figure 5.4 Amplifi er with virtual earth.

Vin

Vout
10K

100K

Figure 5.5 Amplifi er seesaw analogy.

So we have

V
R

C
dV

dt
in out+ = 0

or in other words

dV
dt

V
RC

out in= −

The derivative of Vout is proportional to Vin, so Vout is proportional to the
integral of Vin.

Now we have all that we need to make an analog computer. With it, we
can simulate linear systems, or add some circuit dodges to simulate nonlinear
ones. This was the method of choice in the mid 1970s, but today it is so much
easier to simulate a system digitally.

This does mean, however, that with some operational amplifi ers and a
handful of capacitors, we can produce virtually any transfer function. This
could be all that we need to stabilize a diffi cult system.

5.2.2 Other Confi gurations

Instead of tying V+ to ground, we can apply the input signal to it (see Fig.
5.8). The virtual-earth confi guration has the disadvantage that the amplifi er

V1

V2

Vout = –(V1 +V2)10K 10K

10K

Figure 5.6 Summing amplifi er.

Figure 5.7 Integrator with capacitor feedback.

THE OPERATIONAL AMPLIFIER 101

102 ELECTRONIC DESIGN

has an input impedance that is no greater than the input resistor. Some signal
sources should not be loaded, even by this sort of resistance value.

With the signal applied to the noninverting input, however, the input
impedance is extremely high. Via the feedback, the output will drive the
inverting input to match V+, so the input impedance will be many times larger
than that of the op-amp itself.

To avoid any risk of oscillation, it may be preferable to apply this feedback
via a resistor, rather than a direct connection. By connecting a second resistor
between V− and ground, we can have high input impedance combined with
some noninverting gain (Fig. 5.9). The “seesaw” principle becomes a lever
(Fig. 5.10) and the gain is seen to be (R + Rgnd)/Rgnd.

The circuit shown in Figure 5.9 is the same one we used in the ball-
and-beam experiment. When we add a capacitor between V+ and ground, if
the ball has broken contact with the track, the voltage on V+ will decay very
slowly due to the high input impedance. As soon as the ball makes contact
with the track again, the effect of the capacitor is only a very short time
constant.

Vin Vout = Vin

–

+

Figure 5.8 Noninverting buffer amplifi er.

Vin

Vout = Vin(R + Rgnd)/Rgnd

Rgnd R

–

+

Figure 5.9 Noninverting amplifi er with gain.

Vin

Vout

Rgnd

R

Figure 5.10 Seesaw analogy becomes a lever.

FILTERS FOR SENSORS 103

As with the integrator, the time constant is given by the value of RC. If
our capacitor is chosen to be one microfarad and if the track resistance is
10 Ω, the result will be 10 µs, which is much too small to have any effect on
the system’s performance.

5.2.3 Differential Amplifi er

Some signals, such as strain-gauge outputs, appear as small differences
between two voltages that are not close to ground. Other signals might have
mains noise superimposed on the pair of leads that we are trying to measure.
In these and many other cases we would like an amplifi er that has good
common-mode rejection, which will amplify the difference voltage and not
respond to signals that vary both lines together.

Vout = (V1 – V1).(R + Rgnd)/Rgnd

R

V2

Rin

Rin

Rgnd

V1

R

R

–

+

Figure 5.11 Differential op-amp circuit.

The differential circuit shown is Figure 5.11 is the answer. If we ground
input A and vary input B, we see that the “seesaw” gain of R2/R1 applies to
the difference of the inputs. But if we tie inputs A and B together and vary
them, we see that the voltages on V+ and V− remain equal if Vout remains at
zero. The common-mode gain is thus zero.

5.3 FILTERS FOR SENSORS

In addition to amplifying sensor signals, we may need to process them in other
ways. One requirement might be to remove high-frequency noise.

5.3.1 Antialiasing

It is, of course, possible to take averages of digitized readings to smooth out
some types of noise, but the digitizing process itself suffers from aliasing (Fig.

104 ELECTRONIC DESIGN

5.12). As frequencies rise above half the sampling frequency, the sampled
signal can appear to drop in frequency as the actual frequency goes up. The
phenomenon is similar to the effect in old Western movies when the wagon
wheels appear to turn backward.

Figure 5.12 Example of aliasing.

Figure 5.13 Two simple lowpass fi lters.

The only way to eliminate the high-frequency noise is to attack it before
digitizing, using an antialiasing fi lter. This can simply be a lowpass RC circuit
(e.g., see Fig. 5.13), an op-amp with feedback consisting of a resistor in paral-
lel with a capacitor, or a higher-order fi lter with several capacitors.

FILTERS FOR SENSORS 105

5.3.2 Differentiating and Phase Advance

In principle we could swap the resistor and capacitor of an integrator to form
a differentiator. In practice, the gain increases indefi nitely at high frequencies,
so the output would be swamped with noise. We have to add a resistor in
series with the capacitor (see circuit in Fig. 5.14). The output is a lowpass
version of the derivative, with a limit on the high-frequency gain.

When we add this estimated derivative to the original signal, as when
adding an estimated velocity to a position signal, the result is a phase advance
(see circuit in Fig. 5.15).

At high frequencies, the capacitor can be regarded as a short circuit, while
at DC it acts as an open circuit. The ratio between the gains at high and at
low frequencies is thus (R1 + R2)/R1.

5.3.3 Switched Filters

Possibly the signal that we seek lies is modulated by an alternating voltage.
Many sensors use AC signals, such as the E and I pickoff (Fig. 5.16) used in
the past for aircraft instrumentation and the linear variable differential trans-
former (LVDT) (Fig. 5.17). The output is an AC signal that is zero at a central

Figure 5.14 Differentiator circuit.

R2

R1

Figure 5.15 Phase advance circuit.

106 ELECTRONIC DESIGN

position, increasing with opposing phases as the sensor is displaced on either
side of the center.

To convert such a signal to a DC one that can vary positive and negative,
we require a phase-sensitive discriminator. For this, we can use a semiconduc-
tor switch.

A circuit such as the CMOS 4066 depends on fi eld effect transistors to
close or open connections between pairs of contacts. The control signal is
designed to be operated by the output of a PC logic line or a microprocessor,
but here we use the oscillator supply for the switching signal (see Fig. 5.18).

5.3.4 A Single-Chip ADC

In Chapter 3, many of the experiments depended on the availability of an
ADC. If you have no suitable card, a four-channel or eight-channel ADC can

Output

Supply

Figure 5.16 E and I pickoff.

Supply

Output

Movement

Figure 5.17 Linear variable differential transformer.

FILTERS FOR SENSORS 107

be built from a single chip, connected to the parallel port of the PC with no
additional electronic components.

The MCP3204 and MCP3208 chips from Microchip Technology Inc. are
designed to communicate using a serial technique. Data bits are clocked in
and out in response to a clock signal generated by the computer to which the
chip is connected.

When the “shutdown” line is pulled to ground, the chip is selected. Data
on the Din line is clocked into the chip to set the channel number to be con-
verted. After an extra clock cycle, the chip starts to output the 12-bit result
on the Dout line, most-signifi cant bit fi rst. When the 12th bit has been received,
the computer sets the shutdown line high to reset the chip before the next
conversion. (See confi guration in Fig. 5.19.)

LVDT

1 2

13

output
winding

4066

Oscillator signal
for switching

+

+

–

Figure 5.18 Half-wave switched discriminator.

M
C

P3204

1ADC0

ADC1

ADC2

ADC3 Pin 1

(or Pin 17)

Pin 14

Pin 13

Pin 16Pin 25

0v

0v

5v

Printer port pins

CLK

Dout

Vref

VDD

Din

SHDN

AGND

Figure 5.19 Circuit and printer port connections.

108 ELECTRONIC DESIGN

Just one input line is needed, so one of the control bits of the printer port
can be used. Three output lines from the computer are needed for chip select,
clock, and Din. In fact, a fourth line could be used here, since the chip takes
so little current that it could be powered by a further data bit. However the
voltage on that data bit might be too rough for our required accuracy.

For the code that follows, the connections have been made in the same
sequence as tabulated here:

 MCP3204 Printer Port Pin, Function

14 VDD 17 -select
13 Vref 17 -select
12 AGND 25 ground
11 CLK 1 -strobe
10 Dout 13 printer present
 9 Din 14 -auto LF
 8 SHDN 16 initialize
 7 DGND 25 ground

The four analog inputs are connected to pins 1, 2, 3 and 4.
The code is not very elegant, but I hope that it is clear to follow.

CONST pdata = &H378 ‘Address of the printer port
CONST pinp = &H379 ‘associated input register
CONST pout = &H37A ‘and control register

‘MCP function Printer function
‘ On the pinp port:
CONST DOUT = &H10 ‘printer present

‘On the pout port:
CONST CLKbar = 1 ‘-Strobe
CONST DINbar = 2 ‘-auto linefeed
CONST SHDN = 4 ‘initialize
CONST VDDbar = 8 ‘-select

CONST CLKlo = CLKbar + DINbar ‘VDD high, shutdown low
CONST CLKhi = DINbar ‘same with CLK high

‘Demonstration program:
CLS
SCREEN 9
WINDOW (0, -1)-(1000, 1)
DO
 FOR i = 0 TO 1000
 PSET (i, ADC(0))

FILTERS FOR SENSORS 109

 NEXT
CLS
LOOP UNTIL INKEY$ <> “”

FUNCTION ADC (chan%)
DIM i AS INTEGER, bits AS INTEGER

bits = 0

OUT pout, CLKlo ‘VDDbar=0, shutdown=0

OUT pout, CLKlo - DINbar ‘Start bit must be 1
OUT pout, CLKhi - DINbar ‘clock it
OUT pout, CLKlo - DINbar ‘(subtract DINbar to set DIN

high)

OUT pout, CLKlo - DINbar ‘First bit 1 for single ended
OUT pout, CLKhi - DINbar ‘clock it
OUT pout, CLKlo - DINbar

OUT pout, CLKlo ‘For 3204, don’t care - so output zero
OUT pout, CLKhi ‘(for 3208, same as MSB of address)
OUT pout, CLKlo
IF (chan% AND 2) THEN ‘High bit of channel number
 OUT pout, CLKlo - DINbar
 OUT pout, CLKhi - DINbar
 OUT pout, CLKlo - DINbar
ELSE
 OUT pout, CLKlo
 OUT pout, CLKhi
 OUT pout, CLKlo
END IF

IF (chan% AND 1) THEN ‘Low bit of channel number
 OUT pout, CLKlo - DINbar
 OUT pout, CLKhi - DINbar
 OUT pout, CLKlo - DINbar
ELSE
 OUT pout, CLKlo
 OUT pout, CLKhi
 OUT pout, CLKlo
END IF

 OUT pout, CLKlo
 OUT pout, CLKhi ‘The chip samples input now

110 ELECTRONIC DESIGN

 OUT pout, CLKlo
 OUT pout, CLKhi ‘extra clock was needed

 OUT pout, CLKlo ‘null bit starts now
 OUT pout, CLKhi

FOR i = 0 TO 11
 OUT pout, CLKlo ‘next bit ready now, MSB fi rst
 bits = 2 * bits + (INP(pinp) AND &H10) \ &H10
 OUT pout, CLKhi
NEXT

ADC = (bits XOR 2048) / 2048! - 1
OUT pout, SHDN + CLKbar + DINbar ‘shutdown high

END FUNCTION

5.3.5 A More Rudimentary ADC

For serious applications, it would probable be advisable to use a commercial
ADC chip or to use the ADC capabilities of an embeddable microcomputer.
To support the experiments of Chapter 3, however, it is possible to construct
a converter from very simple components and use the power of software.
That, after all, is part of the essential art of mechatronics.

The heart of the device is a capacitor that charges at a steady rate, to give
a ramp of voltage. An output bit from the computer fi rst drives a transistor
switch that discharges the capacitor and holds it at zero voltage. An output
command frees it to ramp upward to approach the supply voltage. Four com-
parators on a single chip compare the ramp against three inputs and a refer-
ence voltage. These outputs are connected to the bits that serve as input bits
on the printer port, where they are monitored in a counting loop. The loop
ends when the ramp passes the reference voltage. The circuit is shown in
Figure 5.20.

Take care when ordering components. The traditional package for small
integrated circuits was dual inline (DIL). Here the two rows of pins are spaced
at 0.1 in. intervals and the component can easily be mounted and soldered in
a project board. For hand assembly, you must be sure to obtain DIL
components.

Manufacturing has now turned almost completely to surface-mount tech-
nology, where, instead of pins, the component has a row of small metal pads
that bond to the surface of the printed-circuit board when dabs of solder paste
are heated and melted.

If you have faith in your circuit skills—and if your computer is not a cher-
ished favorite—you can obtain 5 and 12 volt supplies from inside it. Take them
from one of the spare power connectors intended for plugging into disk units.

FILTERS FOR SENSORS 111

As always, there are drawbacks. The PC, even in DOS mode, is interrupted
frequently to service “housekeeping” interrupts, including updating the clock
that controls the TIMER function. If one of these interrupts happens during
the ramp, the wrong answer will be given. However, the count given for the
reference voltage will also be less that it should, so a second attempt can be
made or the previous value retained.

The software is as follows. First we have the three addresses for the printer
port and the bit defi nitions, corresponding to the connector pins:

CONST pdata = &H378
CONST pinp = &H379
CONST pout = &H37A

‘ On port pinp:
CONST pin15 = 8 ‘True if high, used for error
CONST pin13 = &H10 ‘True if high, printer present
CONST pin12 = &H20 ‘True if high, out of paper
CONST pin10 = &H40 ‘True if high, ack
CONST pin11 = &H80 ‘True if low, -busy

‘On port pout:
CONST pin1 = 1 ‘True gives low , Strobe
CONST pin14 = 2 ‘True gives low, Auto linefeed
CONST pin16 = 4 ‘True gives high, initialise
CONST pin17 = 8 ‘True gives low, select

We defi ne some shared variables and set up some other values:

0v

+5v

Input 1 Input 2 Input 3 Reference

Pin 1 Pin 15 Pin 13 Pin 12 Pin 10

LM339 Quad comparator

+ + +
+

2N3702

2N370439K

12K 4.7K

?

Printer port connections

Figure 5.20 Circuit of ramp ADC.

112 ELECTRONIC DESIGN

DIM SHARED count AS INTEGER, mincount AS INTEGER
DIM SHARED Table(15)AS INTEGER
DIM SHARED Adc(3), bins(3,3)
FOR i% = 0 to 2
 For j% = 0 to 3
 READ bins(i%, j%)
 NEXT
NEXT
DATA 0, 2, 4, 6
DATA 0, 1, 4, 5
Data 0, 1, 2, 3

After calling DoADC, we fi nd the values in an array Adc()—the syntax looks
the same as when Adc() was a function:

SUB DoADC
FOR i% = 0 to 15
 Table(i%) = 0
Next
count = 0
OUT pout, pin1 ‘release ramp
DO
 x% = INP(pinp)\8 ‘Whole number
divide
 Table(x% AND 15) = count
 count = count + 1
LOOP UNTIL x% AND pin10 ‘ramp crosses

reference

OUT pout, 0 ‘reset ramp
IF count < mincount THEN EXIT SUB ‘leave old results
FOR i% = 0 TO 2
 k% = Table(0)
 FOR j% = 1 TO 3
 IF Table(bins(i%, j%)) > k% THEN
 k% = Table(bins(i%, j%))
 ENDIF
 NEXT
 Adc(i%) = 2 * k% / count - 1
NEXT
END SUB

So, how does it work? Before the ramp crosses the reference voltage, each
time we input from pinp and divide by 8, we will get an answer between 0
and 7. We store the value of count in the corresponding bin. When we have
fi nished “fi lling the bins,” we look at what we have caught.

Any time that the ramp has not crossed input channel 0, the fi rst bit of the
bin number will not be set. The bin number will therefore be 0, 2, 4, or 6. So,
if we look for the largest value in these four bins, we will fi nd the value of
count just before the status of pin 15 changed.

Similarly, the value for channel 1 will be given by the largest value in bins
0, 1, 4, and 5, where the bit of value 2 in the bin number is not set.

Now all that remains is to scale the answer to the range −1 to 1 and store
the result in the Adc array.

Before starting any interrupts, we should call DoAdc several times and note
the largest value of count that it gives. Reduce this by, say, 5%, and save the
answer in mincount. Since we will always PLAY “n0” between calls, the
ramp should have had time to return safely to zero.

You have a further task to complete. You must choose an appropriate value
for the ramp capacitor. Since we are using a software loop for timing, this will
depend on the computer speed and on whether you are using QBasic, Quick
Basic, or a compiled .EXE fi le. Ideally you want count to be about 1000, to
give a resolution of 0.1%. Too low, and you lose accuracy; too high, and you
risk an overfl ow error if count ever exceeds 32,767. Start small, run the
program with a PRINT count line, and dab on extra capacitors in turn until
you fi nd something close to what you want.

5.4 LOGIC AND LATCHES

There have been several generations of changing technology—including RTL,
DTL, TTL, and CMOS—of the extensive family of logic circuits. Now the
7400 and 4000 series CMOS seem to be winning the day, but the variations
are legion. Do you need “high speed,” “very high speed,” “low voltage,”
“advanced,” or “Schottky”? A 2004 catalog contained 15 pages with well over
100 devices listed per page.

It can be shown mathematically that every possible logic circuit can be
constructed from a combination of nor gates. What is a nor gate? If either of
its two logic inputs is at a logic 1, near 5 V, the output will be at logic 0 near
ground. Only if neither one input nor the other is a 1 will the output be high.
It can be described by a “truth table” as shown on the right in Figure 5.21.

In the days of resistor–transistor logic (RTL), such a gate was constructed
from just one transistor and three resistors (see Fig. 5.22).

Two nor gates can be connected together to make a 1-bit memory (Fig.
5.23). If the two free inputs are low, then either output A is high, forcing
output B to be low, hence allowing A to be high—and so on, round in a circle,
or equally output B can be high forcing A to be low, and so on. If input a
becomes high, A will be forced low and B will become high. When a falls
again, the outputs remain in the state they were left. If output b becomes high
for a moment, the output will “fl ip” into the other state—the circuit is some-
times known as a “fl ip-fl op”.

LOGIC AND LATCHES 113

114 ELECTRONIC DESIGN

Today, serious circuits are more likely to use one of the mass of “latches”
or JK fl ip-fl ops that fi ll the catalog, four or more to a chip. Even these are not
likely to be found beyond a “breadboard” experimental circuit, since entire
systems can be implemented by a fi eld-programmable gate array (FPGA) or
burned onto an application-specifi c integrated circuit (ASIC).

Logic can be analyzed by Boolean algebra, by which expressions such as

A B C A B Cand not or or not and not and not()() () () ()()

can be simplifi ed for easier circuit design. Some essential rules can be deduced
from common sense:

A
(A + B)

(A + B)

Truth table of

B

B

A

0

0 0

00

1

1

1

Figure 5.21 NOR gate and truth table.

A

(A + B)

B

Figure 5.22 Transistor NOR gate.

A B

a b

Figure 5.23 Two NOR gates as a fl ip-fl op.

A B C A B A C
A B C A B

and or and or and
or and or

() = () ()
() = ()) ()

() = () ()
and or

not or not and not
not and

A C
A B A B

A BB A B() = () ()not or not

while

 B Bor not true() =

In some computer languages, logic operators are expressed as words such
as these, while others use symbols such as &, |, and !. Mathematicians grace
the subject with the term propositional calculus and use a host of other
symbols.

As an exercise, try simplifying the fi rst expression above.
For mechatronics, logic design is likely to be a means to the end of includ-

ing logic states in the controller. If there is a computer involved, it is usually
easier to sidestep the problem of logic design and use software.

LOGIC AND LATCHES 115

117

6
Essential Control Theory

Control theory is traditionally taught from the point of view of the frequency
response, with great emphasis on the manipulation of transfer functions.
Instead we will start with the state space approach, based on differential equa-
tions that you can identify from the “real” system.

6.1 STATE VARIABLES

The relationship between state variables and initial conditions has already
been mentioned, but let us try to make the concept as clear as possible.

A cup of coffee has just been prepared. It is rather too hot at the moment,
at 80°C. If left for some hours, it would cool down to room temperature at
20°C, but just how fast would it cool, and when would it be at 60°C?

The cup remains full for now, so just one variable interests us: T, the tem-
perature of the coffee. It is a reasonable assumption that the rate of fall in
temperature is proportional to the temperature above ambient. So we see that

dT
dt

k T T= − −()ambient

If we can determine the value of the constant k, perhaps by a simple ex-
periment, then the equation can be solved for any particular initial
temperature—although we’ll look at the form of the solution later.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

118 ESSENTIAL CONTROL THEORY

The concept of state variables is so simple, yet it is essential for gaining
insight into dynamic systems. As an exercise, consider the following systems,
select state variables, and derive state equations for them:

1. The money in a bank account that carries compound interest.
2. The voltage on a capacitor that has a resistor connected across it—

assuming that it is originally charged.
3. The distance of the back wheel of a bicycle from a straight line when

the front wheel is wheeled along the line—assume that it starts away
from the line.

4. The speed of a motor when driven from voltage V.

Think up your own answers before reading on:

1. The state variable in this case is just your credit balance. To fi nd its rate
of change, multiply the credit balance at this very instant by the interest
rate. If we call the credit c and the interest rate R, then the equation is
just

dc
dt

Rc=

where, of course, time is measured in years.
2. This time the state variable is the voltage on the capacitor, v. The current

that will fl ow through the resistor is v/R. The equation linking voltage and
infl owing current i for a capacitor is

i C
dv
dt

=

Since the current in the resistor is fl owing out of the capacitor, we have

i
v
R

= −

so

C
dv
dt

v
R

= −

or

dv
dt

v
RC

= −

STATE VARIABLES 119

3. First let us assume that the bicycle’s angle is small, so that its sine can be
assumed to be equal to the value of the angle in radians. Now the state
variable can be defi ned as the distance of the back wheel from the line
along which the bicycle is being wheeled. If this distance is x and the length
between the wheels is L, then a bit of trigonometry shows that for a small
angle the component of the velocity of the back wheel perpendicular to
the line is Vx/L toward it, where V is the forward speed. We end up
with

dx
dt

V
x
L

= −

4. As the motor speeds up, a backward electromotive force (back-emf) is
generated that opposes the applied voltage V. If the angular velocity is w ,
the motor current will be proportional to

V k− w

So, we have

d
dt

aV b
ω ω= −

 where b = ak. When the motor reaches its top speed, the acceleration will
be zero, so

wmax = aV b

Equations of this sort apply to a vast range of situations. A rainwater barrel
has a small leak at the bottom. The rate of leakage is proportional to the
depth, H, and so

dH
dt

kH= −

The water will leak out until eventually the barrel is empty. But suppose now
that there is a steady fl ow into the barrel, suffi cient to raise the level (without
leak) at a speed u. Then the equation becomes

dH
dt

kH u= − +

What will the level of the water settle down at now? When it has reached a
steady level, however long that takes, the rate of change of depth will have
fallen to zero, so

120 ESSENTIAL CONTROL THEORY

dH
dt

= 0

It is not hard to see that −kH + u must also be zero, and so

H u k=

Now, if we really want to know the depth as a function of time, a mathemati-
cal formula can be found for the solution. But let us try another approach
fi rst: simulation. See http://www.EssMech.com/6/2.

6.2 SIMULATION

With very little effort, we can construct a computer program that will imitate
the behavior of the barrel. The depth right now is H, and we have already
described the rate of change of depth dH/dt as (−kH + u). In a short time dt,
the depth will have changed by

− +()kH u dt

so that in program terms we have

H = H + (-k*H + u)*dt

This will work as it stands in most computer languages, although some might
insist on it ending with a semicolon. Even when wrapped up in input and
output statements to make a complete program, the simulation is very simple.
In QBasic it is

PRINT “Plot of Leaky Barrel
INPUT “Initial level - 0 to 40 (try 0 fi rst) “; h
INPUT “Input U, 0 to 20 (try 20 fi rst) “; u

k = 0.5
dt = 0.01 ‘Edit to try various values of steplength dt

Screen 12
WINDOW (-.5, 0)-(5.5, 40)
PSET(t, h) ‘starting point
DO
 h = h + (-k * h + u) * dt ‘This is the simulation
 t = t + dt
 LINE - (t, h) ‘This joins the points with lines
LOOP UNTIL t > 5

Take care! This simulation will not be exact. The change in H over time
dt will be accurate only if dt is very small. For longer timesteps, dH/dt
will change during the interval and the simulated change in H will be in
error.

Try values such as dt = 1 to see the error. See also that for small values,
reducing dt makes no perceptible change.

6.3 SOLVING THE FIRST-ORDER EQUATION

At last we must consider the formal solution of the simple fi rst-order example,
where we assume that the system is linear. The treatment here may seem
overelaborate, but later on we will apply the same methods to more demand-
ing systems.

By using the variable x instead of H or Tcoffee or such, we can put all these
examples into the same form

dx
dt

ax bu= +

(6.1)

where a and b are constants that describe the system. u is an input, which can
simply be a constant such as Tambient in the fi rst example or else be a signal
that we can vary as a control.

Rearranging, we see that

dx
dt

ax bu− =

Since we have a mixture of x and dx/dt in this expression, we cannot simply
integrate it. We must somehow fi nd a function of x and of time that will fi t in
with both terms on the left of the equation.

If we multiply both sides by a mystery function f(t), we get

dx
dt

f t axf t buf t() − () = − ()
(6.2)

Now consider

d
dt

xf t()()

When we differentiate by parts, we see that

d
dt

xf t
dx
dt

f t xf t()() = () + ′()

SOLVING THE FIRST-ORDER EQUATION 121

122 ESSENTIAL CONTROL THEORY

where f ′(t) is the derivative of f(t).
If we can choose f(t) so that

′() = − ()f t af t

then this will fi t the lefthand side of Equation (6.2) to give

d
dt

xf t buf t()() = ()

(6.3)

and we can simply integrate both sides to get the solution.
The function that satisfi es

′ () = − ()f t af t

is

f t e at() = −

Now we can integrate both sides of Equation (6.3) to obtain

xe bue dtat t at
t

− −[] = ∫0
0

that is

x t e x bue dtat at
t

() − () =− −∫0
0

so

x t x e e bue dtat at at
t

() = () + −∫0
0

Now, if a is positive, the fi rst term will represent a value that will run off to
infi nity as time increases. If our system is to be stable, a has to be negative.
So the coffee cup, the water barrel and the bicycle are stable, but the bank
account is not.

If u remains constant throughout the interval 0 to t, we can simplify this
still further:

 x t x e ub e aat at() = () + −()0 1 (6.4)

We will come back to this equation when we look at sampled data control.

6.4 SECOND-ORDER PROBLEMS

I hope that you had no diffi culty coming to grips with fi rst-order systems, ones
that had a single state variable. The following are second-order systems. You
should be able to spot two state variables for each of them. You should also
be able to write two differential equations for each example:

1. A mass hanging on a spring, bouncing vertically
2. A pendulum swinging in a plane
3. The distance between the back wheel of a bicycle and a straight line

when the handlebar angle is varied (small movements away from the
line)

4. The voltage on a capacitor when it, a resistor and an inductance are all
connected in parallel

5. The position of a servomechanism where acceleration is the input

Once again, give it a try before reading on. Answers are as follows:

1. For the mass, bouncing vertically on a spring, there are two state variables.
The fi rst is the height x of the mass above the rest position, and the second
is its upward velocity v. The fi rst differential equation can be seen as subtle
or obvious, depending on how you look at it

dx
dt

v=

 since the rate of change of position is simply the velocity. The second equa-
tion is not quite as easy. The rate of change of velocity is the acceleration.
Now the acceleration is proportional to the defl ection, the displacement
away from the rest position, where the constant is the stiffness of the spring
divided by the mass. The second equation is therefore

dv
dt

Sx
M

= −

 If we add an input to the system, by allowing the top of the spring to be
moved up or down a distance u, we have

dv
dt

S u x
M

=
−()

2. This is almost exactly the same as the previous example. This time the
state variables can be taken as the angle of the pendulum and the angle’s
rate of change. Instead of the constant S/M, however, the constant for the

SECOND-ORDER PROBLEMS 123

124 ESSENTIAL CONTROL THEORY

second equation is now g/L, the acceleration due to gravity divided by the
length of the pendulum.

3. Unlike the previous bicycle example, this time both front and back wheels
can move away from the straight line. We could take these two distances
as the state variables. If we call them x for the rear wheel and w for the
front wheel, then we see that the bicycle is pointing at an angle (w − x)/L
to the line. The rate of change of the rear-wheel distance will be this angle
times the forward speed:

dx
dt

w x
V
L

= −()

 The direction in which the front wheel is pointing will be (w − x)/L + u,
where u is the handlebar angle, so

dw
dt

w x
V
L

Vu= − −() +

 This looks rather different from the other examples. But the choice of state
variables is not unique. Instead of the defl ection of the front wheel, we
could instead have taken the angle the bicycle is pointing as our second
state variable. If we call this angle a, we have

dx
dt

Va=

 For the second equation, since a = (w − x)/L, we have

da
dt

dw
dt

dx
dt

L= −

 that is

da
dt

u
V
L

=

4. The two things that cannot change instantaneously are the voltage v on
the capacitor and the current i through the inductor. For the inductor, we
have

L
di
dt

v=

 and for the capacitor we have

C
dv
dt

i
v
R

=

= − −

current into the capacitor

 where R is the resistance. Rearrange these slightly, and you arrive at equa-
tions for di/dt and dv/dt.

5. This is almost too easy! State variables are now position x and velocity v,
so we have

dx
dt

v=

 and

dv
dt

bu=

 where u is the drive applied to the servomotor and b is a constant.

6.5 MODELING POSITION CONTROL

A servomotor drives a robot axis to position x. The speed of the axis is v. The
acceleration is proportional to the drive current u; for now there is no
damping.

Can we model the system to deduce its performance?
We have just found equations for the rate of change of x and v:

dx
dt

v

dv
dt

bu

=

=

We can carry their values forward over an interval dt by adding dt times these
rates of change to their values, just as we did for the water barrel.

With a fi xed input, the response will not be very interesting. The real use
for such a simulation will be to try out various values of feedback. We can
start with a position error of 1, say, and ask the user to input values for f, the
position feedback, and d, the damping or velocity feedback.

Application of feedback means, “Giving u a value depending on the state.”
So, before we update the variables, we must make

u = -f * x - d * v

MODELING POSITION CONTROL 125

126 ESSENTIAL CONTROL THEORY

The following code will perform the simulation; if we defi ne input u in terms
of acceleration, rather than motor drive, we can make b = 1:

SCREEN 12
WINDOW (-.05, -1.1)-(2.05, 1.1)
INPUT “Feedback, damping (suggest 2,2 to start) “; f, d
LINE (0, 0)-(2, 0), 9 ‘Axis, blue
dt = .0001 ‘Make dt smaller to slow display
x = 1 ‘Initial values
v = 0
t = 0
PSET (0, x) ‘move to the fi rst point
DO
 u = - f * x - d * v ‘u is determined by feedback
 x = x + v * dt ‘This is the simulation
 v = v + u * dt
 t = t + dt

 LINE -(t, x) ‘This displays the result
LOOP UNTIL t > 2

Start with f, d values of 2, 2.
Next try 10, 5. What do you notice?
How about 1000, 50?
Now try 10000, 200.

It seems that we can speed up the response indefi nitely by giving bigger and
bigger values of feedback. Is control really so simple?

Of course, the answer is “No.” Our simulation has assumed that the system
is linear, that doubling the input doubles everything else. But if we have a real
motor, there is a limit at which it can accelerate. Let us suppose that the units
in our simulation are meters and that it runs for 2 s.

Let us also make the maximum acceleration 10 meters per second. After
the u = line, insert two lines

IF u > 10 THEN u = 10
IF u < -10 THEN u = -10

to impose a limit on u. Now run the program and try all the pairs of values
again.

Values 2, 2 and 10, 5 give the same sluggish responses as before. But 1000, 50
overshoots wildly, and 10000, 200 is even worse. The limit on the motor drive
has had a dramatic effect on performance.

But now try 10000, 1600. There is no overshoot and the response has settled
in considerably less than one second. It seems that if we know how, we can
design good controllers for nonlinear systems. There will be more on that in
Chapter 10.

You can borrow a couple of lines from the code in Chapter 3 to construct
a real-time “target,” changing as you tap the keys, then feed back (target
- x) in the equation for u.

Now you can look at some examples on the book’s Website, at http://www.
essmech.com/6/5/, to see similar simulations written in JavaScript. Do not
just run them; experiment with them and modify their code.

6.6 MATRIX STATE EQUATIONS

We have succeeded in fi nding a way to simulate the second-order problem,
and there seems no reason why the same approach should not work for third,
fourth, and more. How can the approach be formalized?

First we must fi nd a set of variables that describe the present state of the
system—in this case x and v.

They must all have derivatives that can be expressed as combinations of
just the state variables themselves and the inputs, together with constant
parameters that are properties of the system.

We have a set of equations that express the change of each variable from
instant to instant. If there should happen to be some unknown term, then we
have clearly left out one of the state variables; we must hunt for its derivative
to work it in as an extra equation.

In the present position control example, the equations can be laid out as
follows:

dx
dt

v

dv
dt

bu

=

=

As soon as a mathematician sees a pair of equations, there is an irresistible
urge to put them in the form of a single matrix equation

d
dt

x

v

x

v b
u

=

+

0 1

0 0

0

and then to push the shorthand even further. The vector, for that is what x
and v have become, is represented by a single symbol x. The 2 × 2 matrix is
given the symbol A, and the matrix that multiplies u is given the symbol B.
Just in case u might “fatten up” and have two components, it is also made a
vector, u. So we have

MATRIX STATE EQUATIONS 127

128 ESSENTIAL CONTROL THEORY

d
dt

A B
x

x u= +

Well, it does look a lot neater. There is one more change. There is a conven-
tion to represent the time derivative by a dot over the variable, so we end up
with

 ẋ x u= +A B (6.5)

which looks very much like the form we used for the fi rst-order systems.
But this still describes the open-loop system, the one that we would like to

change with some feedback. How can we deal with feedback in matrix terms?
The secret is in the u = line. The mixture of variables that we feed back can
be expressed in matrix terms as

u x d= +F G

where d is some external demand such as the target value for position. Now
we can substitute into the state equation to get

ẋ x x d= + +()A B F G

which simplifi es to

ẋ x d= +() +A BF BG

Apart from A having become A + BF and B having become BG, this has
exactly the same form as Equation (6.5). The effect of our feedback has been
to change the A and B matrices to values that we like better. But how can we
decide what we will like?

You will have to wait until Chapter 8, when you will become skilled in the
art of eigenvalues.

6.7 ANALOG SIMULATION

It should be obvious by now that our state equations tell us which inputs to
apply to integrators that will have outputs corresponding to the state vari-
ables’ values.

It is ironic that analog simulation “went out of fashion” just as the solid-
state operational amplifi er was perfected. Previously the integrators had
involved a variety of mechanical, hydraulic, and pneumatic contraptions, fol-
lowed by an assortment of electronics based on magnetic amplifi ers or therm-
ionic valves. Valve amplifi ers were common even in the late 1960s, and

required elaborate stabilization to overcome their drift. Power consumption
was high and air-conditioning essential.

Soon an operational amplifi er was available on a single chip, then four to
a chip at a price of a few cents. But by then it was deemed easier and more
accurate to simulate a system on a digital computer. The costly part of analog
computing had become that of achieving tolerances of 0.01% for resistors and
capacitors, and of constructing and maintaining the large precision patch-
boards on which each problem was set up.

In the laboratory, the analog computer still has its uses. Leave out the
patchboard, and solder up a simple problem directly. Forget the 0.1% com-
ponents—the parameters of the system being modeled are probably not
known to better than a percent or two, anyway. Add a potentiometer or two
to set up feedback gains, and a lot of valuable experience can be acquired.
Take the problem of the previous section, for example.

We have seen in Chapter 5 that an analog integrator can be made from an
operational amplifi er, but that the signal integrates in the negative sense when
a positive signal is applied.

To produce an output that will change in the positive sense, we must follow
this integrator with an inverter. That will mean, too, that with both signs of
the signal available, we can attach a potentiometer between them to try both
negative and positive feedback.

The circuit shown in Figure 6.1 can give some sort of simulation of the
position control problem, although as it stands, the range of gains you can try
will be very limited.

One feature it does represent is limits. The amplifi ers cannot give voltages
outside their supply rails of +12 and −12 V. You will see that the feedback
signals have been mixed in an inverter, connected to the fi rst integrator with
a 10 kΩ resistor. This gives an effective gain of 10, and the effect on the ampli-
fi er limit is equivalent to saying that the motor is capable of accelerating at a
rate of 10 m/s. This gain of 10 will apply to the feedback coeffi cients, but they
will still be much smaller than the values you used in the “professional” posi-
tion control experiment.

10mF

10mF 100K/d

10K

All resistors are 100K except those marked

Position
demand

u

v
–x x

v–v

u

Figure 6.1 Simulation circuit, gain of 10 from mixer.

ANALOG SIMULATION 129

130 ESSENTIAL CONTROL THEORY

6.8 MORE FORMAL COMPUTER SIMULATION

The simulations we have seen so far are “run up on the spot” as simply and
concisely as possible. For more general use, however, we need a more formal
methodology.

Software can be written in a host of languages, including QBasic, Visual
Basic, JavaScript, or even a package such as Matlab, but the simulation will
have a common structure:

1. Defi ne constants and variables.
2. Set variables to their initial conditions, and defi ne the timestep.
3. Begin the loop.
4. Calculate the drive input(s)
5. Calculate the rates of change of the state variables, using the state

equations.
6. Update the state variables, by adding rate of change *dt.
7. Update the current time, by adding dt to it.
8. Plot the variables, or capture them for plotting later
9. Repeat the loop until the end of the simulation.

The state equations do not have to be linear. They can include limits or geo-
metric functions as necessary, depending on the detail that we are trying to
achieve. We can simulate continuous control, with timesteps that are small in
order to preserve accuracy. We can simulate discrete-time control where the
drive is allowed to change only at intervals of many steps of the continuous
system’s update.

The essential requirement is that the state equations used must be an
accurate representation of the system.

131

7
Vectors, Matrices,

and Tensors

For both state space control theory and kinematics, we can take advantage
of matrix methods.

There is a tendency among mathematicians to regard matrices as arcane
and mystic entities, with cryptic properties that reward a lifetime of study.
Engineers can be duped into this point of view if they are not careful.

7.1 MEET THE MATRIX

Matrices are, in fact, just a form of shorthand that can come in very useful
when a lot of calculating operations are involved. There are strict rules to
observe, but when used properly matrices, vectors, and tensors are mere tools
that are the servant of the engineer.

You will probably have fi rst encountered matrices in the solution of simul-
taneous equations. To take a simple example, the equations

5 7 2

2 3 1

x y

x y

+ =

+ =

can be “tidied up” by separating the coeffi cients from the variables in the
form

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

132 VECTORS, MATRICES, AND TENSORS

5 7

2 3

2

1

=

x

y

where the variables x and y are now conveniently grouped as a vector. Now
the multiplication rule has defi ned itself.

We move across the top row of the matrix, multiplying each element by the
corresponding component as we move down the vector to its right, adding up
these products as we go. We put the resulting total in the top element, here
5x + 7y.

Then we do the same for the next row, and so on.

7.2 MORE ON VECTORS

What does a vector actually “mean”? The answer has to be “anything you
like.” Anything, that is, that cannot be represented by a single number but
requires a string of numbers to defi ne it. It could even be a shopping list:

5 3 2oranges lemons grapefruit+ +

can be written in matrix format as

orange lemon grapefruit[]

5

3

2

which we might write in a line of text as (orange, lemon, grapefruit) (5,3,2)′
or else place the dot between them that we use for scalar product. The
numbers on the right have defi ned a “mixture” of the items on the left.

Rather than fruit, we are more likely to apply vectors to coordinate
systems—but we are still just picking from a list.

We might defi ne i, j, and k to be unit vectors all at right angles, say, east,
north, and up. We can call them basis vectors.

When we say that point P has coordinates (2,3,4)′, we mean that to get
there, you start at the origin and go 2 m east, then 3 m north, and 4 m up.

We could write this as

2 3 4i j k+ +

which is a mixture of the basis vectors defi ned by a matrix multiplication—
vectors are just skinny matrices.

Now, when we turn our minds to applications, we can see many uses for
vector operations. When a force F moves a load a distance x, the work done
is given by their scalar product F · x.

MORE ON VECTORS 133

As before, we take products of corresponding elements and add them up,
to get a scalar number.

We usually think in terms of “the matrix multiplies the vector.” But how
about thinking of the vector multiplying the matrix? What does it do to it?
Consider the following matrix:

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

=
+ +
+ +
+ +

x

y

z

x y z

x y z

x y z

From one perspective, the top element is equal to the scalar product of the
top row of the matrix with the vector (x,y,z)′. Similarly, the other elements
are the scalar products of the vector with the middle and bottom rows of the
matrix, respectively.

So we have

The product of a matrix and a column vector is a mixture of the vectors
that make up the columns of the matrix.

Suppose that point P is defi ned in terms of a second set of basis vectors, u, v,
and w, so that its coordinates (x,y,z)′ mean xu + yv + zw. To fi nd the coordi-
nates in terms of i, j, and k, we simply multiply and add up the contributions
from u, v, and w.

We can “transform the coordinates” by multiplying (x,y,z)′ by a matrix
made up of columns representing vectors u, v, and w, to end up with a vector
for P as a mixture of i, j, and k.

The product of a matrix and a (column) vector is made up of the scalar
products of the vector with each of the rows of the matrix.

But there is another way of seeing it. The answer is the same as

1

4

7

2

5

8

3

6

9

+

+

x y z

So we also have

134 VECTORS, MATRICES, AND TENSORS

7.3 MATRIX MULTIPLICATION

Often we will fi nd a need to multiply one matrix by another. To see this in
action, let us look at another simple “mixing” example.

In a candy store, “scrunches”, “munches,” and “chews” are on sale.
Also on sale are “Jumbo” bags each containing 2 scrunches, 3 munches,

and 4 chews, and “Giant” bags containing 5 scrunches, 6 munches and only
one chew. If I purchase 7 Jumbo bags and 8 Giant bags, how many of each
sweet have I bought?

The bag contents can be expressed algebraically as

J s m c= + +2 3 4

and

G s m c= + +5 6 1

or in matrix form as

J

G

s

m

c

=

2 3 4

5 6 1

Note that matrices do not have to be square, as long as the terms to be mul-
tiplied correspond in number.

Now my purchase of 7 Jumbo bags and 8 Giant bags can be written as

7 8J G+

or in grander form as the product of a row vector with a column vector:

7 8[]

J

G

But I can substitute for the J,G vector to obtain

7 8
2 3 4

5 6 1
[]

s

m

c

To get numerical counts of scrunches, munches, and chews we have to calcu-
late the product of a numerical row vector with a numerical matrix. As before,
we march across the row(s) of the one on the left, taking the scalar product
with the columns on the right.

The answer is what common sense would give.

From 7 Jumbo bags, with scrunches at 2 to a bag, we fi nd 7 times 2
scrunches.
From 8 Giant bags, we fi nd 8 times 5 more, giving a grand total of 54.

The fi nal answer is

54 69 36[]

s

m

c

that is 54 scrunches, 69 munches, and 36 chews.
Now the shop is selling an Easter bundle of 3 Jumbo bags and a Giant bag,

and still has in stock Christmas bundles of 2 Jumbo bags and 4 Giant bags.
If I buy fi ve Easter packs and one Christmas pack, how many scrunches,
munches, and chews will I have?

As an exercise, write down the matrices involved and multiply them out
by the rules that we have found. (Your answer should be 89 scrunches + 105
munches + 77 chews.)

The mathematician will still worry about the order in which the matrix
multiplication is carried out. We must not alter the order of the matrices, but
we can group the pairs for calculation in either of two ways.

The Christmas and Easter bags can fi rst be opened to reveal a total of
Jumbo and Giant bags, then these can be expanded into individual sweets.
Alternatively, work out the total of each sweet for a Christmas bag and for
an Easter bag fi rst. The result must be the same. (Check it.)

Mathematicians would say that “multiplication of matrices is
associative:”

ABC AB C A BC= () = ()

7.4 TRANSPOSITION OF MATRICES

Our mixed fruit multiplication can be written as

orange lemon grapefruit[]

5

3

2

or equally well as

TRANSPOSITION OF MATRICES 135

136 VECTORS, MATRICES, AND TENSORS

5

orange

lemon

grapefruit
[]

3 2

giving 5 oranges + 3 lemons + 2 grapefruit in both cases—this result is in the
form of a scalar. But note that in reversing the order in which we multiply the
vectors, we have had to transpose them.

Transposing a scalar is not very spectacular—but when two matrices are
multiplied together to give another matrix, C = AB, then, if we wish to fi nd
out the transpose of C, we must both transpose A and B and reverse the order
in which we multiply them:

′ = ′ ′C B A

7.5 THE UNIT MATRIX

One last point to note before moving on is that

1 0 0

0 1 0

0 0 1

=

x

y

z

x

y

z

The matrix with 1 s down its diagonal and 0 s elsewhere has the special prop-
erty that its product with any vector or matrix leaves that vector or matrix
unchanged. Of course, there is not just one unit matrix; they come in all sizes
to fi t the rows of the matrix that they have to multiply. This one is the 3 × 3
version.

7.6 COORDINATE TRANSFORMATIONS

It has been mentioned that vector geometry is usually introduced with the aid
of three orthogonal unit vectors: i, j, and k.

For now, let us keep to two dimensions and consider just (x,y)′, meaning
xi + yj.

Now suppose that there are two sets of axes in action. With respect to our
fi rst set the point is (x,y)′ but with respect to a second set it is (u,v)′. Just how
can these two vectors be related?

What we have in effect is one pair of unit vectors i, j, and another pair,
l, m, say. Since both sets of coordinates represent the same vector, we
have

x y u vi j l m+ = +

Now each of the vectors l and m must be expressible in terms of i and j.
Suppose that

l i j

m i j

= +

= +

a b

c d

or in matrix form

l m i j[] = []

a c

b d

We want the relationship in this slightly twisted form, because we want to
substitute into

l m[]

u

v

to eliminate vectors l and m to get

i j[]

a c

b c

u

v

Now the ingredients must match:

x

y

a c

b d

u

v

=

Although this exercise is now graced with the name “vector geometry,” we
are merely adding up mixtures in just the same form as the antics in the candy
store.

To convert our (u,v)′ coordinates into the (x,y)′ frame, we simply multiply
the coordinates by an appropriate matrix that defi nes the mixture.

Suppose, however, that we are presented with the values of x and y and are
asked to fi nd (u,v)′. We are left trying to solve two simultaneous equations:

x au cv

y bu dv

= +

= +

In traditional style, we multiply the top equation by d and subtract c times
the second equation to obtain

COORDINATE TRANSFORMATIONS 137

138 VECTORS, MATRICES, AND TENSORS

dx cy ad bc u− = −()

and in a similar way, we fi nd

− + = −()bx ay ad bc v

which we can rearrange as

u

v ad bc
d c

b a

x

y

=
−()

−
−

1

where the constant 1/(ad − bc) multiplies each of the coeffi cients inside the
matrix.

If the original relationship between (x,y)′ and (u,v)′ was

x

y
T

u

v

=

then we have found an “inverse matrix” such that

u

v
T

x

y

=

−1

The value of (ad − bc) obviously has special importance—we will have great
trouble in fi nding an inverse if (ad − bc) = 0. Its value is the “determinant”
of the matrix T.

7.7 MATRICES, NOTATION, AND COMPUTING

In a computer program, rather than using separate variables x, y, u, v, and so
on, it is more convenient mathematically to use “subscripted variables” as the
elements of a vector.

The entire vector is then represented by the single symbol x, which is made
up of several elements x1, x2, and so on.

Matrices are now made up of elements with two suffi ces:

A

a a a

a a a

a a a

=

11 12 13

21 22 23

31 32 33

In a computer program, the subscripts appear in brackets, so that a vector
could be represented by the elements X(1), X(2), and X(3), while the ele-
ments of the matrix are A(1,1), A(1,2), and so on.

It is in matrix operations that this notation really earns its keep. Suppose
that we have a relationship

x u= T

where the vectors have three elements and the matrix is 3 × 3. Instead of a
massive block of arithmetic, the entire product is expressed in just fi ve lines
of Basic program:

FOR I=1 TO 3
 X(I)=0
 FOR J=1 TO 3
 X(I)=X(I)+T(I, J)*U(J)
 NEXT J
NEXT I

For the matrix product C = AB, the program is hardly any more complex:

FOR I=1 TO 3
 FOR J=1 TO 3
 C(I,J)=0
 FOR K=1 TO 3
 C(I,J)=C(I,J)+A(I,K)*B(K,J)
 NEXT K
 NEXT J
NEXT I

Or in Java or C it becomes

for(i = 1; i<=3; i++){
 for(j = 1; j<=3; j++) {
 c[i][j] = 0;
 for(k = 1; k<=3;k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

These examples would look almost identical in a variety of languages and
would show the same economy of programming effort.

In Matlab the shorthand of matrix operations goes even farther—but there
is a danger that the engineroom will be lost to view behind the paintwork.

Clearly, if we are to try to analyze any except the simplest of systems by
computer, we should fi rst represent the problem in a matrix form.

MATRICES, NOTATION, AND COMPUTING 139

140 VECTORS, MATRICES, AND TENSORS

But beware!!

If you have no computer to hand, it will almost certainly be quicker, easier,
and less prone to errors to use non-matrix methods to solve the problem.

7.8 EIGENVECTORS

If we multiply a vector and a matrix, what do we get?
We get another vector. For example

1 2

1 4

1

0

1

1−

=
−

From the vector (1,0)′, we get (1,−1)′. This new vector is not only a different
“size”; it represents a different direction. Another example is:

1 2

1 4

0

1

2

4−

=

So, from the vector (0,1)′, we get (2,4)′—again in a new direction.
Are there any vectors that can be multiplied by the matrix

1 2

1 4−

to give another vector in the same direction?
If we start with (x,y)′, another vector in the same direction will be (lx,ly)′—

where l is some constant.
We are looking for a vector x for which

Ax x= l

or

A Ix x= l

where I is the unit matrix. We can move both terms to the lefthand side
to get

A Ix x− =λ 0

or

A I−() =λ x 0

where the 0 is a vector with all components zero.
You will recall that we could consider the matrix–vector product as a

mixture of the columns of the matrix.
So here, if the vector x is not 0, we have a combination of the columns of

(A − lI) that will give (0,0)′.
Remember also that to evaluate a determinant of a matrix, you can fi rst

add multiples of columns to other columns of the matrix without changing
the determinant’s value.

Thus we have a way to reduce a column of (A − lI) to all zeros, and so its
determinant must be zero.

Now, when we construct A − lI and take its determinant, we get

det
1 2

1 4
0

−
− −

=
λ

λ

which we can expand as

1 4 1 2 0−() −() − −() =l l

or

l l2 5 6 0− + =

So, we have not just one value for l , but two: 2 and 3.
If we substitute the value 2, we get

1 2 2

1 4 2

0

0

−
− −

=

x

y

which is satisfi ed if x = (2,1)′.
Let us try it out:

1 2

1 4

2

1

4

2−

=

So Ax = 2x, just as we hoped to fi nd, and x is an eigenvector of A. The value
of l is called an eigenvalue.

As an exercise, fi nd the other eigenvector, corresponding to eigenvalue
l = 3.

If the matrix A is n × n, the equation for l will be nth order and there will
be n roots. But the method is just the same:

EIGENVECTORS 141

142 VECTORS, MATRICES, AND TENSORS

1. Write down (A − lI) and take its determinant.
2. Equate the determinant to 0, giving a polynomial for l .
3. Solve this, to get a set of n eigenvalues.
4. For each eigenvalue, substitute that value back into (A − lI)x = 0, getting

a set of simultaneous equations for the elements of x.
5. Solve these equations, and you have each corresponding eigenvector.

143

8
Mathematics for Control

8.1 DIFFERENTIAL EQUATIONS

8.1.1 Breaking Down the State Equations

In Section 6.6, we saw how a system could be described by a matrix state
equation of the form

ẋ x u= +A B

in which there are several simultaneous fi rst-order equations.
We have looked at an example where

˙

˙
x v

v bu

=
=

and we could consider applying feedback

u x v b= − −()6 5

to get

v̇ x v= − −6 5

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

144 MATHEMATICS FOR CONTROL

In matrix form these equations are

˙

˙
x

v

x

v

=
− −

0 1

6 5 (8.1)

We can eliminate v from the two equations to get the “conventional” form of
a single second-order differential equation

˙̇ ˙x x x= − −6 5

or

˙̇ ˙x x x+ + =5 6 0

8.1.2 Solving the Single-Variable Equation

There are a number of ways to solve such an equation. The high-school
approach is to say try emt. If

x emt=

then

ẋ memt=

and

˙̇x m emt= 2

so

˙̇ ˙x x x m m emt+ + = + +()5 6 5 62

The exponential will be nonzero for all fi nite values of m and t, so we equate
the quadratic to zero and solve it, in this case getting roots m = −2 and
m = −3.

The general solution will be

x Ae Bet t= +− −2 3

where A and B are constants determined by the initial conditions

x A B

x A B

0

0 2 3

() = +
() = − −˙

DIFFERENTIAL EQUATIONS 145

8.1.3 Solving the Matrix Equation Directly

Now let us consider the matrix form again. Can we solve Equation (8.1) in a
more direct way?

The equation has the form

ẋ x= A

Suppose that x happens to be in the direction of one of the eigenvectors of
A, which we will call x. We could write

x

x

=
=

n

n

x
x� �

where x is a constant vector. Now Ax = lx, since that is how eigenvectors
and eigenvalues are defi ned, so Ax will be in the same direction as x;

ẋ x= A

tells us that

�n nx x= λ

and since x is constant, we have

ṅ n= l

which has the solution

n n e t= ()0 l

If l is positive, this will represent a function that will keep growing to infi nity.
If l is negative, it will die away to zero. For stability, this l must be
negative.

But there will be as many eigenvalues and eigenvectors as the order of the
system. For second- and higher-order systems, we can express x as a mixture
of the eigenvectors. So now we need all the eigenvalues to be negative, since
if any one of them. should be positive, the corresponding component will grow
to infi nity.

However, some of the roots could be complex.
Now

e t j tj tw w w= () + ()cos sin

146 MATHEMATICS FOR CONTROL

So

e e e

e t j t

j t t j t

t

λ ω λ ω

λ ω ω

+() =
= () + ()()cos sin

If the real part of the root is positive, the response will be a sine wave that
keeps on growing. So, for stability, the real parts of every one of the roots
must be negative.

Let us take another look at the response of the position control system, by
fi nding the eigenvalues of the matrix that describes it:

0 1

6 5− −

We take the determinant of A − lI

−
− − −

l
l

1

6 5

and arrive at the quadratic equation

l l2 5 6 0+ + =

The roots are l = −2 and l = −3. Does that sound familiar?
Replace the m in Section 8.1.2 by s, and you will see something resembling

the notation of the Laplace transform. Of course, the roots are the same, yet
again.

8.2 THE LAPLACE TRANSFORM

The mathematical justifi cation of the Laplace transform involves integrals
over infi nite time. The inverse requires an infi nite contour integral in the
complex frequency domain. But all of this is irrelevant to the way the notation
is used by a mechatronic engineer.

8.2.1 The Basis of the Transform

The signifi cant property of its defi nition is that the transform of the derivative
of a function is the variable s times the transform of the function, minus the
value of the function at t = 0:

L L�x s x x() = () − ()0

This achieves two things. It eliminates derivatives, turning each differentia-
tion into a variable s. It also gives a formal method of dealing with the initial
conditions. The result is a function of s for which the corresponding function
of time can be looked up in a table. In effect, the table of transforms is a cook
book full of “Here’s one I prepared earlier.”

Now, when we take the transform of our equation for the position system,
we get

L L�� � �x x x s s x sx x x+ +() = + +() () − () − () −5 6 5 6 0 0 5 02 (()

so, here is that quadratic again!
With no other input, this expression is equal to zero, so we can rearrange

it to get

L x
s x x

s x
() = +() () + ()

+ +
5 0 0

5 62

�

So now we know the Laplace transform of x, but what is it as a function of
time?

The cornerstone of the method is the uniqueness theorem, which
states that there is one and only one function of time that corresponds to any
transform in s. If we have constructed a table of functions and their trans-
forms, then, if we can match the transform, we have found the right
function.

In the case above, we can factorize the denominator and split the
expression into partial fractions. If, for example, x(0) = 2 and x

.
(0) = −5, we

get

L x
s s

() =
+

+
+

1
2

1
3

and of course when we look them up in the table, we fi nd the same pair of
exponentials as before.

In the mid-1950s, before the Laplace notation became fashionable, the
Heaviside D operator was used for the same purpose. Where today we see
polynomials in s, then we would have seen polynomials in D, although an
extra s appears in the denominators of the functions in the table of
transforms.

In the D operator notation, the transform that is just 1 corresponds to the
unit step, which is zero for all negative time and has value 1 for all positive
time. The Laplace function 1/s corresponds to the unit step, but the inverse
of the Laplace function 1 is the unit impulse. This has a time integral of 1,
but is infi nitesimally thin, so that it has to be infi nitely tall. It is not a very
comfortable function to have to deal with.

THE LAPLACE TRANSFORM 147

148 MATHEMATICS FOR CONTROL

8.2.2 Transfer Functions

A useful application of the Laplace transform notation is for the expression
of transfer functions. They have an important place in the analysis of control
systems, as long as they are not held to be the one and only method.

Consider yet again the motor system described by the equation ẍ = u, and
suppose yet again that we wish to apply feedback. This time, however, we have
no tacho signal and have only x to feed back.

We know that making u = −ax will give us

˙̇x ax= −

which is the equation for simple harmonic motion. Undamped oscillation is
not the best kind of control that we might hope for. So, as we did in the experi-
ment of Chapter 3, we try to “guess” the velocity from x.

To estimate the velocity, we fi rst construct xslow, where

d
dt

x k x xslow slow= −()

In Laplace terms, ignoring initial conditions, this becomes

sX k X Xslow slow= −()

where capitals are used for the transforms, so

s k X kX+() =slow

or

X
k

s k
Xslow =

+

We estimated the velocity as k(x − xslow) so that

V kX k
k

s k
X

sk
s k

X

est = −
+

=
+

So, now that we have an estimated velocity to feed back, let us try

˙̇x ax bv= − − est

which in Laplace terms is expressed as

s X aX b
sk

s k
X2 = − −

+

We can multiply through by (s + k) and reorganize to get

s ks a bk s ak X3 2 0+ + +() +() =

To test stability, we look at the roots of the cubic in s. The response will
involve terms in est for each root of the polynomial. As before, if the real part
of any root is positive, the exponential will run away and the system will
clearly be unstable. So once again we see that all the roots must have negative
real parts.

Lemma. A cubic can always has one real root, so it can be factorized into
the form

s p s qs r

s p q s pq r s pr

+() + +()
= + +() + +() +

2

3 2

Now we know that if and only if p, q, and r are positive, the roots will have
negative real parts and the system will be stable. An easy deduction is that
the three coeffi cients of the polynomial must be positive, but there is
another condition. Look at the product of the middle two coeffi cients

p r pq r+() +()

If p, q, and r are positive, this is clearly greater than pr, which is just one
of terms when expanded. But this is the product of the fi rst and last coef-
fi cients. So, for stability, the product of the middle two coeffi cients must
be greater than the product of the outer two.

In the example above, if a, b, and k are all positive, we can see that the condi-
tion for stability is satisfi ed. So here is a theory confi rming that estimating
the velocity by this method will always work as far as stability is concerned,
but we have to look deeper to select values for the “best performance.”

8.2.3 Transfer Functions and Matrices

We can mix the transform method with the matrix state equations, too. When
we have

ẋ x u= +A B

THE LAPLACE TRANSFORM 149

we can take the transform to get

s A BX X U= +

which we can rearrange by introducing a unit matrix I, to get

sI A B−() =X U

from which we get

X U= −()−
sI A B

1

This gives us a transfer function matrix that enables us to express each
element of X in terms of the elements of input function U.

8.3 DIFFERENCE EQUATIONS

Until now, when we have used the computer to update the state variables, we
have been careful to make the timestep small, so that the approximation to
continuous differential equations will be suffi ciently accurate. But can we fi nd
another way to analyze the system that recognizes the discrete-time nature
of computer control?

8.3.1 Sequences of Discrete-Time Samples

As far as the computer is concerned, x is not a continuous function but is
defi ned by a sequence of sampled values, x0, x1, x2, x3. . . . The analysis is made
much easier if we assume that these are taken at regular equal intervals of
time, T, so that our continuous and discrete systems are linked by

x x nTn = ()

The computer outputs its control variable un very shortly after the measure-
ment of xn, and u remains constant until the next sample time.

With continuous variables, we defi ned our equations in terms of rate of
change. Now we can instead look at the difference between samples, so that
instead of

dx
dt

ax bu= +

we have something like

x x cx dun n n n+ − = +1

150 MATHEMATICS FOR CONTROL

but it is all so much simpler if instead of differences we just think of the next
value.

x c x dun n n+ = +() +1 1

At the end of Section 6.3, we constructed a solution to the differential equa-
tion by multiplying both sides by an exponential and integrating. We got
Equation (6.4)

x t x e ub e aat at() = () + −()0 1

which calculated the value of x an interval t after applying a constant input
u. If the interval is T, we have

x T x e u b e aaT aT() = () + () −()0 0 1

With slight modifi cation this will tell us the value of x at time (n + 1)T in
terms x and input u at time nT

x n T x nT e u nT b e aaT aT+()() = () + () −()1 1

or in terms of our sequence of samples

x x e u b e an n
aT

n
aT

+ = + −()1 1

This is in a form similar to that of our original state equation, showing that
the next x is a linear combination of the present state and the present input.
We could write this as

x ax bun n n+ = +1

but we would risk confusion between the continuous and discrete
parameters.

Let us settle for

x px pun n n+ = +1

where

p eaT=

and

q b e aaT= −()1

DIFFERENCE EQUATIONS 151

Now if the input is zero, we obtain

x pxn n+ =1

so

x px

x p x

x p xn
n

1 0

2
2

0

0

=
=
=

For stability, pn must not grow indefi nitely, so the magnitude of p must not be
greater than unity. For a disturbance to decay to zero, we require that

p < 1

8.3.2 Discrete-Time State Equations

We have found a solution for the fi rst-order case, but what if the system is of
higher order? Can we use similar methods to solve the matrix differential
equation? Can we use

ẋ x u= +A B

to get a discrete-time form?
In Section 6.3, we multiplied both sides by e−at to get an expression that we

could integrate. But is there such a thing as e−At when A is a matrix?
We can expand e−at as an infi nite series

e at a t a tat− = − + −1 2 32 2 3 3! ! . . .

and when we differentiate it term by term, we see a result that is −a times the
series with which we started.

In the same way, we can defi ne

e I At A t A tAt− = − + −2 2 3 32 3! ! . . .

and by differentiating term by term, then comparing powers of t against the
original series, we see that its derivative is −e−AtA. So now

d
dt

e e e AAt At At− − −() = −x x x˙

and by an integral similar to that in Section 6.3, we arrive at

152 MATHEMATICS FOR CONTROL

x x ut e e I A BAt At() = () + −() −0 1

when u is constant over the interval. Hence

x x un
At

n
At

ne e I A B+
−= + −()1

1

which we can write as

x x un n nP Q+ = +1

The matrix P is the state transition matrix, sometimes written as F(T).
With zero input, the state is multiplied by P between samples, so that

x xn
nP= 0

If l is an eigenvalue of P, and if x0 is the corresponding eigenvector, then

x xn
n= l 0

so if the magnitude of any eigenvalue is greater than unity, the state will run
off to infi nity. For a disturbance to decay to zero, we require that

l <1

for every eigenvalue of P.

8.3.3 A Shortcut to Discrete-Time State Equations

For a system like the position controller, there is a more direct way to get the
discrete-time state equations. We merely solve the equations in a direct way.

We have

˙̇x bu=

so

� �

�
x t x but

x t x x t but

() = () +
() = () + () +

0

0 0 22

We can rewrite these, giving values of x and v at time T, as

x T x v t ubt

v T v ubT

() = () + () +
() = () +

0 0 2

0

2

DIFFERENCE EQUATIONS 153

The state equation is therefore

x

v

T x

v

bT

bT
un

n

n

n
n

+

+

=

+

1

1

21

0 1

2

8.4 THE Z TRANSFORM

A mathematician can make the Laplace transform look simple in comparison
with the z transform. With contour integrals in the complex frequency plane,
summation of infi nite series, and an explanation in terms of trains of impulses,
the subject can be made somewhat forbidding.

8.4.1 The “Next” Operator

There is, of course, another way to look at the topic. While the Laplace s can
be seen as shorthand for d/dt, z can be regarded as meaning “next.”

The discrete-time matrix state equation is

x xn n nP Q+ = +1 u

which we can regard as defi ning “next” x. For the transform, we can write

z P QX X U= +

and get a discrete transfer function in the form

X U= −()−
zI P Q

1

It is easy to make a connection between the z operator and lines of software.
When a variable is changed, we can regard the assignment statement as setting
the “next” value.

So, from

xslow = xslow + k * (x - xslow) * dt

we can replace dt by T and get

next x x kT x xslow slow slow() = + −()

or in transform terms

zX X kT X Xslow slow slow= + −()

154 MATHEMATICS FOR CONTROL

so

z kT X kTX− +() =1 slow

This gives us the discrete transfer function

X
kT

z kT
Xslow =

− −()1

Now Vest was given by

V k X Xest slow= −()

(there is no extra z because this is “algebra” rather than a state equation)

V k
kT

z kT
X

k
z

z kT
X

est = −
− −()

= −
− −()

1
1

1
1

To work out the transfer function of the double integrator, we look at the fi nal
state equation in the previous section:

x

v

T x

v

bT

bT
un

n

n

n
n

+

+

=

+

1

1

21

0 1

2

We can write

z X TV b T U

z V bTU

−() = + ()
−() =

1 2

1

2

so, substituting for V and dividing through by (z − 1), we obtain

X
z

z

bT
U= +

−()
1

1 22

2

Now, if

U fX dV= − − est

we can substitute for Vest to obtain a polynomial in z multiplying X. The roots
of this polynomial will determine whether the system is stable.

THE Z TRANSFORM 155

As an exercise, try the algebra and see what you can tell about f, d, and kT
for stability. There are more conditions to satisfy than in the continuous
case.

You can also try pole assignment, where you choose three roots that you
would like and manipulate the values of f, d, and kT to match the equation
coeffi cients. Try matching three equal roots of 0.5.

The solution is as follows:

X
z

z

bT
U

z

z

bT
fX dk

z
z kT

X

= +

−()

= +

−()
− − −

− −()

1

1 2

1

1 2
1

1

2

2

2

2

So, multiplying through by the denominators, we have

2 1 1 1 1
2

z z kT X f z kT X dk z X−() − −()() = − − −()() − −()

or bringing everything to the left and taking out the factor X, we obtain

2 1 1 1 1 0
2

z z kT f z kT dk z X−() − −()() + − −()() + −(){ } =

We end up inspecting the roots of

2 6 2 6 4 03 2z kT z kT f dk z f dk fkT− −() + − + +() − + −() =

Remember that we are not looking for the simple condition that all the roots
have negative real parts, but instead we must show that their magnitudes
should all be less than unity.

Instead of struggling, we can “cheat” by saying that we would like
three equal roots of 0.5; in other words, the polynomial in z is equivalent
to

2 0 5 0
3

z −() =.

(The 2 is there to make the coeffi cients of z3 match.)

2 3 1 5 0 25 03 2z z z− + − =. .

By equating coeffi cients, we have

2 3 1 5

1 5

1 5 0 25

kT kT

f dk

f dk f

= =
+ =

+ − =

, so .

.

. .

156 MATHEMATICS FOR CONTROL

thus

1 5 1 25. .f =

giving

f dk= =5
6

2
3

and

A free decision can still be made concerning the sampling interval.
Do not forget that the values of 0.5 have been pulled out of thin air, without

any real justifi cation. The actual behavior of the system might be better
assessed by simulation.

8.5 CONVOLUTION AND CORRELATION

Although these seem to be rather abstruse mathematical tricks, heaped with
double-summation sigma signs, they are remarkably useful.

8.5.1 Convolution

Having just come to grips with discrete-time control and the z transform, it
is appropriate to deal with convolution fi rst.

Let us apply a time function u(nT) to our system. If we wish, we can think
of this as a train of outputs to a digital-to-analog converter—there is no need
to get tied up with impulses.

Suppose fi rst that we apply just one output, of value 1 at n = 0 and zeros
from then on. We can express this as a sequence (1,0,0,0, . . .).

How should we describe the output? We are interested only in the sample
values at t = 0, t = T, t = 2T, and so on, which we can write as y(nT) or yn. We
might have measured the sequence of values in an experiment or deduced the
function from mathematical manipulation of state equations, it does not
matter.

So, if we apply the input sequence

1 0 0 0, , ,()

to our system we have a special unit response:

h h h h hn1, , , ,2 3 4 . . . , , . . .()

If the fi rst input is of size u0 instead of 1, we will have an output at each value
of nT:

y u hn n= 0

CONVOLUTION AND CORRELATION 157

Now suppose instead that we apply an input at t = T, so that

u u= ()0 0 0 01, , ,, . . .

Everything will happen one sample later, so that the output at (n + 1)T is

y u hn n+ =1 1

so

y u hn n= −1 1

In the fi rst case the result of the input had time nT to “mature,” but the second
input a sample later has only had time (n − 1)T to mature until we sample the
output at time nT.

We can go on considering the effect of each individual input ui at time iT,
which will be

y u hn i n i= −

but when we have to consider the effect of the whole input sequence com-
bined, we must add them all up—assuming that the system is linear.

So, now we have an expression with a summation

y u hn i n i= −∑
Over what range do we have to perform the summation?

Well, it is no use starting before i = 0, since we assume that the input
sequence started only then. There is no point in continuing beyond i = n,
unless our system is able to respond to inputs that will happen in the future.
(Since we might not always be dealing with time functions, this could some-
times be the case.)

The mathematician would say that y is obtained from the convolution of
u with h.

In some cases we can regard our system as a fi lter, which we apply to
process the sequence u. It might, for example, be a smoothing fi lter to present
weather data or gasoline prices more neatly. In the cases where we have to
perform the summation all the way from the start, it would be called an infi -
nite impulse response (IIR) fi lter, meaning that the effect of a single input
will take forever to die away.

But we can use other fi lters with a limited “window.” We might just want
to take the average of the latest 10 values, in which case we start summing
only from i = n − 9. Alternatively, we may consider our lowpass fi lter to “run
out of steam” after the unit response has had 10 intervals to decay, so that we

158 MATHEMATICS FOR CONTROL

chop off the sequence at that point to save computing effort. In either case,
we will call the fi lter a fi nite impulse response (FIR) fi lter.

We will later see this sort of convolution in action in image processing.

8.5.2 Correlation

In convolution, we multiply the terms of one sequence taken left to right by
terms from another taken right to left and add up the result.

Correlation is very similar, except the terms are taken in the same
direction, but with some displacement between them. So what is it useful
for?

Global Positioning System (GPS) satellites transmit a “song” consisting of
a repeated pseudorandom binary sequence (PRBS). We can think of this as
a sequence of +1s and −1s like this:

+ + + + - - - + - - + + - + -

The 15 symbols repeat to give

+ + + + - - - + - - + + - + - + + + + - - - + - - +

Now, if we multiply each symbol by itself, we will, of course, get a string of
+1s, and if we sum these over a cycle, we will get the answer 15. But what
happens if we move the fi rst sequence—let us call it the template—relative to
the second that we can consider a test sequence. First let us move it by just
one symbol:

 + + + + - - - + - - + + - + - template
+ + + + - - - + - - + + - + - + + + + - - test
 + + + - + + - - + - + - - - - product

and now when you sum the terms in the product, you get the answer −1. In
fact, you will get this answer when you shift the template relative to the test
sequence by any number of symbols except an exact cycle of 15.

Of course, GPS uses much longer sequences, 1023 for coarse acquisition
and a huge number for the precision signal. However, the principle is the
same. By correlating the received signal against a sequence generated in the
receiver, it is possible to get a measure of the delay time from satellite to
ground—and hence the distance. In fact, each satellite generates a different
sequence, and the correlation of one satellite’s “song” against another is
always near zero.

CONVOLUTION AND CORRELATION 159

(If you are interested, the sequence above is a3 � a4—the next value is 1
if the third to the left is different from the fourth to the left and −1 if they are
the same.)

So, we have an expression for the correlation

C n a bi i n() = +∑
where we sum over the range of the template, a, to give an answer that is a
function of the shift, n.

The uses are endless. We can examine an audio signal to try to recognize
particular sounds in it. By launching into two dimensions and a double
summation, we can examine image data to look for specifi c objects or
characters.

Image correlation is something not to be entered lightly, though. If our
template is just 32 pixels square, we have over 1000 multiplications and addi-
tions for a single point of the result. But if the test image is 320 × 320 pixels,
we can consider 288 values of shift in each direction. We arrive at some 80
million operations to process a single image, and that is for a specifi c size and
orientation of the template.

We have to take a little care with the template, which will probably contain
analog values rather than simple 1s and −1s. We must reduce its mean to zero,
so that we will not get a signifi cant response when it is correlated against a
constant. We must also smooth its ends, so that the “chopped off” data at the
limits of summation do not look like anything of interest.

160 MATHEMATICS FOR CONTROL

161

9
Robotics, Dynamics,

and Kinematics

After all the electronic sensing, signal processing, and computing have been
put into effect, most applications must result in some mechanical movement.
We might be required to look at the theory of coordinating the axes of a robot
to put the workpiece in the correct position or more simply to choose a motor
and gearbox to move a load at a safe top speed.

9.1 GEARS, MOTORS, AND MECHANISMS

Electricity is powerful stuff. It is quite easy to relate electrical power to
mechanical power in metric units, although pounds and feet will require a lot
of conversion factors.

Consider the following:

1 9 81kilogram force newtons
so a force of one newt

= .
oon is about the weight of an apple

joule newto
()

=1 1 nn-meter
watt joule per second1 1=

So a one-watt motor, if it were 100% effi cient, could lift a one-kilogram mass
at a rate of 10 centimeters per second. To lift a 75-kilogram passenger in an
elevator at one meter per second will require

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

162 ROBOTICS, DYNAMICS, AND KINEMATICS

75 9 81 1× ×. W

Now the motor may be only 50% effi cient, so provision must be made for 1.5
kilowatts per passenger, plus a lot more for accelerating the cage.

In selecting a motor for a mechatronic task, it is important to allow for
suffi cient power. But it is also important not to provide excessive power, force,
or speed.

Some time in the 1950s, the autopilot of a passenger aircraft decided that
the aircraft should plunge vertically. Not surprisingly, the pilot disagreed, but
could not disengage the autopilot. The resulting tug-of-war came to an end
when the geartrain of the autopilot broke. Ever since, autopilots have been
designed with a shear link, a sort of mechanical fuse, so that the possible
disaster can ultimately be blamed on pilot error.

9.1.1 Calculating Motor Performance

A typical small motor might have a top speed of some 6000–12,000 revolu-
tions per minute, that is, 100–200 revolutions per second. How can we convert
this rotary motion into a linear motion of, say, 1 meter per second?

A pulley to match this speed would have to have an effective circumference
of between 5 and 10 millimeters—much smaller than practical. With a reduc-
tion gear of ratio 30 : 1, however, the pulley could be between 50 and 100 mm
in diameter (remember that π is involved).

There are a number of parameters that will defi ne the motor: the
resistance, the stall torque, the no-load speed, the moment of inertia, the
rated voltage, and the rated power. We should also consider the starting
torque.

When the motor rotates, it generates a back-emf—indeed, any good motor
can be used as a generator. There is an important coeffi cient that we will call
kV, where, if we neglect the starting torque

k VV = ()rated no loadrpm60 2π

The generated voltage will be

V kVgen = w

where w is the angular velocity of the rotation. You will note that kV has been
calculated to make the generated voltage equal to the rated voltage at the
no-load speed.

A good permanent-magnet DC motor will have a small starting torque and
corresponding small starting voltage. If allowed to run freely, it will take little
current since it will run at such a speed that the generated back-emf almost

GEARS, MOTORS, AND MECHANISMS 163

equals the supply voltage. If a load is applied to the motor, it will slow down,
the back-emf will drop, and the current will increase accordingly until the
drive torque is equal to the load torque. That leads us to another important
parameter, kT, such that

Torque = k iT

where i is the current in the motor. We can calculate kT from the resistance
R and the rated stall torque by

k R VT = stall torque rated

Under load and at steady speed, the output power is the product of the torque
and the angular velocity, so it is given by

k i

k V k R
T

T V

ω
ω ω= −()

When the motor runs free, the output power is zero; when the motor is stalled,
the output power is also zero. Maximum mechanical power is obtained at half
the no-load speed, when the back-emf Vgen will be V/2.

At any speed, the power dissipated in the motor as heat is i2 R, while the
power taken from the supply is iV. But

V V iR= +gen

so the mechanical power output, equal to supply power minus dissipation, is

=

=

V i

k iV

gen

ω

But above we saw that this power was

k iTw

so

k kT V=

So we can simply call these two parameters, which are actually the same
parameter, k. The voltage generated per radian per second is equal to the
meter-newtons of torque per ampere of current.

We also see that at half no-load speed, the output mechanical power is
equal to the dissipated heat.

164 ROBOTICS, DYNAMICS, AND KINEMATICS

9.1.2 The Effect of an Inertial Load

Now we can set up a differential equation for the motor, when driven with no
load from voltage V:

I
d
dt

ki

k
V k

R

w

w

=

= −

The motor will accelerate up to its steady speed with time constant I R/k2.
When we add an inertial load of mass M, it will increase the effective

moment of inertia to I + M r2, where r is the “effective pulley,” the distance
moved by the mass for each radian of motor rotation. This takes any gearbox
into consideration.

The maximum acceleration from rest is

r
d
dt

r
kV R

I Mr

ω

=
+ 2

which will be greatest if the motor, gearbox, pulley, and mass are “matched”
so that

Mr I2 =

Of course, maximizing the acceleration may not be the most important objec-
tive. There may be a standing force on the mass, for example, if the mass
moves vertically or if it is part of a machine with a cutting force. If the motor
must withstand a disturbance torque at rest, the power taken from the supply
will correspond to that torque acting at the motor’s top speed. And all that
power will be dissipated as heat in the motor.

It may, therefore, be desirable to increase the gear ratio, thereby decreasing
the effective pulley, to obtain a compromise between standing torque and
peak acceleration. If the gear ratio is doubled, for example, the standing
torque is halved while the peak acceleration is reduced from its optimum by
only 20%.

The gear ratio can be multiplied by 3.7 before the peak acceleration is
halved, although this will reduce the top speed by the same factor of 3.7. Good
design is always a matter of compromise.

9.1.3 Mechanisms

When we wish to convert the rotation of a motor to the motion of a load, a
pulley is merely one very simple example of a mechanism to use. The choice
will often have very little to do with dynamics.

GEARS, MOTORS, AND MECHANISMS 165

A pulley-and-belt system (Fig. 9.1) has the advantage of simplicity, but has
other drawbacks. In its simple form there is the risk of slip, so that there is
an error between motion at the motor and motion of the load. This can be
avoided with a “toothed belt”—although there is still the issue of stretching
of the belt.

A more robust mechanism might appear to be the rack-and-pinion system
(Fig. 9.2). A gear on the motor or its gearbox now runs on a rack, or linear
gear, running the length of the travel required. This has some penalties of
cost, but a greater drawback is that the motor now travels with the mass as
part of the load.

Machine tools favor the lead screw (Fig. 9.3), a rod with square-cut threads
running the length of the slideway. On one hand, mechanical effi ciency is
poor; on the other hand, it is insensitive to disturbing forces. It is also likely
to suffer from “backlash.”

In any system with “teeth,” particularly a gearbox, the problem of backlash
requires attention. As the motor rotates, the load is pushed along. When the

Belt

Motor

Load

Figure 9.1 Pulley and belt.

Moving motor

Fixed rack

Figure 9.2 Rack and pinion.

Motor

Figure 9.3 Lead screw.

166 ROBOTICS, DYNAMICS, AND KINEMATICS

motor stops and reverses, it must rotate a little way before the “other side”
of the tooth engages to push the load the other way. There are several
remedies.

An “antibacklash” gearbox can be installed. This is, in effect, two gear-
boxes working in parallel. A spring ensures that one gear pushes the output
shaft hard up against the other gear. If enough torque is applied, the backlash
is still there.

The same sort of effect occurs if the axis is vertical, so that the gearbox
“holds the load up” and contact is always made on the same face of the gear.

In a rack-and-pinion system, the pinion can be sprung against the rack.
In a machine tool, care is usually taken to approach a setting from the same

direction, as when a lathe traverse is moved to take a deeper cut.
This is a good point to mention a signifi cant aspect of control theory.

If we attempt to close a control loop around a backlash element, we will
have problems. On reaching the target, the controller is likely to oscillate
in a limit cycle as it attempts to nudge the load on either side of zero error.
We can include a velocity term measured at the motor, but this might
merely convert the dithering to a slower twitch.

Alternatively, we can concentrate on controlling the motor position alone.
The control problem will be much simpler, but now we might have an error
in the load position equal to the backlash. Elasticity in a drive belt can
pose a similar dilemma.

Of course, the load might not be constrained to move in a straight line. The
whole appeal of the revolute robot is that arms rotate about pivots at the
joints, where any straight lines are the result of cunning coordination of axes
working in unison. Other devices rely on mechanisms such as the four-bar
linkage that can result in rotation about a “virtual pivot.”

Gearbox design is an art in itself. As well as conventional gears, there are
worm drives, harmonic drives, sun and planet mechanisms, and many more.
When the relationship between motor speed and load speed is to be nonlinear,
there are solutions that include elliptic gears. Yet, however complicated the
mechanism, we can apply the principle of virtual work.

The product of load force multiplied by the distance that it moves must,
ignoring friction losses, be equal to the product of motor torque multiplied
by the angle through which it rotates.

9.2 THREE-DIMENSIONAL MOTION

A point P in space is defi ned by a three-dimensional vector, but the method
employed to represent it is not unique. The most obvious form is Cartesian
(Fig. 9.4a), in which, the three coordinates are found by resolving the vector

THREE-DIMENSIONAL MOTION 167

from the origin in the directions of three orthogonal vectors through that
origin. There are also spherical polar (Fig. 9.4c) coordinates, equivalent to
defi ning the latitude, longitude, and distance of the point from the origin, also
cylindrical polar (Fig. 9.4b), in which the point is represented by radius, direc-
tion, and height.

Not only is the location of the origin a matter of choice, we can orient
the orthogonal vectors of Cartesian coordinates with 3 more degrees of
freedom.

For now, however, let us take it that the origin is fi xed and that we have
three unit vectors i, j, and k defi ning the x, y, and z directions.

As we saw in Chapter 7, our point P can be represented as (x,y,z)′,
meaning

x y zi j k+ +

When the point moves, x, y, and z will vary as functions of time. Now we can
take the derivatives of the vector components to calculate the velocity and
acceleration. It is worth making a few remarks about these.

As it moves, P will follow a curve in space (see Fig. 9.5). The velocity vector
will be a tangent to this curve at P. The acceleration can be broken into two
perpendicular components. One of these is in the same direction as the veloc-
ity, representing a change in speed, while the other is perpendicular to the
path, aligned through the instantaneous center of rotation, the center of cur-
vature of the path at that point.

This may seem too simple—and it is. When we start to analyze the motion
of a robot, we must deal with six dimensions, not just three. We are concerned
with solid bodies, not mere points in space. We have three dimensions of

x

y

z

Cartesian

(x, y, z)

x

y

z

rq

Cylindrical

(r, q, z)

r

q

f

Spherical polar

(r, q, f)

Figure 9.4 (a) Cartesian (x,y,z), (b) cylindrical (r,q,z), and (c) spherical polar (r,q,f)
coordinates.

168 ROBOTICS, DYNAMICS, AND KINEMATICS

freedom in the location of one particular point of the object, but then we can
perform three rotations to orient the object in space. We might think of these
rotations as movement about the pitch, roll, and yaw axes of an aircraft (see
Fig. 9.6).

Instead of the vector coordinates of just one of its points, we have to think
of the position and orientation of the object as being defi ned by the transfor-
mation that maps each of its points to the new position that it takes up. Let
us fi rst consider the transformation of rotation.

t

n

b

P

Figure 9.5 Center of curvature.

x

y

z

Yaw

Roll

Pitch

Figure 9.6 Schematic representation of 6 degrees of freedom.

THREE-DIMENSIONAL MOTION 169

9.2.1 Rotations

We can set up a coordinate system of three orthogonal axes in the object. To
start with, these will coincide with our “reference system” axes i, j and k that
stay fi xed. But as we rotate the object about the origin, its axes will move to
be three other orthogonal vectors through the origin.

Let us consider three such unit vectors a, b, and c, passing through
the origin of our coordinate system and orthogonal to each other (Fig.
9.7).

A point expressed in terms of these vectors as coordinates (x,y,z)′ will
be

a b cx y z+ +

This can be expanded as

i j k[]

a b c

a b c

a b c

x

y

z

1 1 1

2 2 2

3 3 3

to give the coordinates of the same point in terms of the reference system.
We transform the coordinates to the reference axes by multiplying (x,y,z)′

by this matrix A. So, let us look at some of the properties of A.
Since they are unit vectors, a · a = 1, b · b = 1 and c · c = 1. Also, since the

vectors are orthogonal, the scalar product of any two different vectors is zero,
for example, a · b = 0.

Let us consider the product of A with its transpose:

j

i

k

a
b

c

a i j k = + + a a a1 2 3

Figure 9.7 Unit vectors.

170 ROBOTICS, DYNAMICS, AND KINEMATICS

′ =

A A

a a a

b b b

c c c

a b c

a b c

a b c

1 2 3

1 2 3

1 2 3

1 1 1

2 2 2

3 3 3

Remember the “scalar products” way to look at matrix multiplication. We see
that

′ =

A A

a a a b a c

b a b b b c

c a c b c c

· · ·

· · ·

· · ·

But from what we know of these scalar products

′ =

A A

1 0 0

0 1 0

0 0 1

So

′ =A A I

or

′ = −A A 1

The rotation transformation matrix is extremely easy to invert!
There is a further property that we have to preserve; the axes must make

up a “righthanded” set. The conventional set of axes will be i and j, as we
draw x and y on a horizontal sheet of graph paper, and k vertically upward
in the z direction.

Because it reverses the x coordinate, the matrix

−

1 0 0

0 1 0

0 0 1

would map a lefthanded glove into a righthanded glove, something no rotation
could do. Yet it satisfi es the property of having three mutually orthogonal
unit vectors as its rows and its columns. What is wrong?

A property of a rotation is that there is an axis about which the rotation
takes place. Now, if a vector x is aligned with this axis, it is not changed by
being transformed by A; in other words

Ax x=

THREE-DIMENSIONAL MOTION 171

So x is an eigenvector of A, with eigenvalue 1. All the eigenvalues of a rotation
must be 1, so the determinant of A must be 1. The determinant of the glove-
bending matrix is −1, so it cannot represent a rotation.

We should look at some examples of rotation matrices. If we rotate the x–y
plane by an angle q1 about the z axis (Fig. 9.8), we get new coordinates:

x y x y zcos sin sin cosq q q q1 1 1 1− +(), ,

The z component stays the same.
In matrix terms, the transformation is

cos sin

sin cos

θ θ
θ θ

1 1

1 1

0

0

0 0 1

−

A rotation q2 about the y axis would be represented by

cos sin

sin cos

q q

q q

2 2

2 2

0

0 1 0

0−

Note that a positive rotation is “clockwise looking out along the axis,” so this
tips the x axis downward.

If we multiply the matrices together to get the result of applying both
transformations, we will start to build up a string of sines and cosines that
will be lengthy to write and muddling to read. Therefore, we use considerable
abbreviation and write cos q1 as c1, sin q1 as s1, and so on. If we apply these in
order, the transformed coordinates will be

c s

s c

c s

s c

x

y

z

2 2

2 2

1 1

1 1

0

0 1 0

0

0

0

0 0 1−

−

q1

Figure 9.8 Rotation about z axis.

172 ROBOTICS, DYNAMICS, AND KINEMATICS

Note that the transformation that is applied fi rst is closest to the vector; in
other words, the matrices are ordered right to left. Note, too, that the order
is important and must not be changed. Here the result is

c c s c s

s c

s c s s c

x

y

z

1 2 1 2 2

1 1

2 1 1 2 2

0

−

−

Check that the columns are unit vectors that are mutually orthogonal.
See rotations in action at www.essmech.com/9/2/1.htm
So far we have been considering transformations that leave the origin fi xed,

but we must also be able to move the coordinates anywhere in three
dimensions.

9.2.2 Translations

To move an object a vector distance, we simply add that vector to every one
of its points.

For example, a point (x,y,z)′ can be moved a vector distance (1,2,3)′ to
arrive at (x + 1, y + 2, z + 3)′—it’s not really diffi cult! To fi nd the new vector,
we simply add the displacement to it.

The problem is that we now have two different processes for dealing
with the two types of movement: rotation and translation. One involves mul-
tiplying the point coordinates by a 3 × 3 matrix, while the other involves
adding constants to each component. Can we fi nd some way of gluing them
together into a single operation? If we can, we can start to deal with combina-
tions of transformations, such as “screwing” where the object is rotated at the
same time as it is moved along the rotation axis.

We have to appease the mathematicians! Rotation is a transformation
given by a simple multiplication of a vector by a matrix, but the ability to add
a constant to the result requires an affi ne transformation.

However, there is a way around the problem. Suppose that instead of
writing our vector as (x,y,z)′ we write it as (x,y,z,1)′.

What is the 1 for? It gives something for a matrix to grab onto to add a
translation d to the vector! But now the vector has four components, and the
matrix is 4 × 4.

We can “partition” a matrix to see its various parts in action, so if we write
T x for the product of our point with a transformation matrix, now 4 × 4, we
can break it down as follows.

A Ad x x d

0 0 0 1 1 1

=

+

Thus, at the expense of changing our matrices to 4 × 4, where the bottom row
is always (0,0,0,1), we can apply any combination of rotations and translations,
just by multiplying the T matrices together.

This transformation is called the Denavit–Hartenberg (or D–H) matrix.

9.3 KINEMATIC CHAINS

The most usual form for a robot is a chain of links with actuated joints
between them. These joints can be revolute, a sort of powered hinge, or pris-
matic, with one member sliding past another. We will refer to both types as
axes. Although some kinematic chains can be “closed,” such as the four-bar
linkage of Figure 9.9, most robots are “open” where only one end of the chain
is fi xed.

When we consider the toolpiece of a robot, its location in space has been
transformed by the motion of every axis in turn that moves it. Before we can
address the task of deciding on joint angles or displacements to put the tool
where we want it, we have to derive an expression for its location and orienta-
tion in terms of the joint axis variables.

9.3.1 Chains of Axes

When we have just one movable axis, there is a single transformation and all
is straightforward. When we have a robot such as the Unimation Puma, with
6 degrees of freedom, we have to be systematic in the way that we analyze
it.

Let us start with i, j, and k as the usual x,y,z axes fi xed in the mounting of
the robot and call them frame 0. We need to know the transformation that
will convert the coordinates of anything held in the gripper into coordinates
with respect to the reference frame 0 in the robot’s base.

We can defi ne a succession of frames as we make our way along the robot
to the gripper. Each of these frames will have a local x, y, and z direction
related by some transformation to the next frame. Some transformations will
relate to the variable angles that make up the axes; others will simply take us
from one end to the other of a link such as the “forearm.”

We can choose the frames so that the transformations between them are
extremely simple, involving either a rotation about one of the axes or a trans-
lation along one of the axes.

Let us see this in action (Fig. 9.10).

Figure 9.9 Four-bar linkage (sometimes called three-bar).

KINEMATIC CHAINS 173

174 ROBOTICS, DYNAMICS, AND KINEMATICS

The joints of the Puma can be thought of as mimicking the human body.
The fi rst joint is a “waist joint” that rotates the whole of the rest of the robot
about a vertical axis.

Then, mounted a little to one side, is a simplifi ed “shoulder joint.” This
allows the upper arm to rotate about a horizontal axis extending from the
“shoulder.”

Next we have a simplifi ed “elbow joint,” also allowing rotation about a
horizontal axis parallel to that of the shoulder.

Then we have three wrist joints to which it is diffi cult to assign names. The
fi rst allows rotation about the line of the forearm, as you would use when
turning a door handle. The second is a hinge perpendicular to this, such as
you might use when petting a dog. The third is a twist, rather like a screw-
driver held between fi ngers and thumb.

We need to defi ne a chain of frames all the way from frame 0 to the
gripper. For our fi rst “journey,” let us simply climb up the shaft of the
robot to the height of the shoulder, where we will put frame 1. The transfor-
mation 0

1T will convert frame 1 coordinates to frame 0 coordinates, and so
will be

Figure 9.10 Axes of a Unimation Puma.

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

h

where h is the height of the shoulder from the base. This transformation will
simply add h to the z coordinate.

Now we will use the waist joint to rotate the line of the shoulder. This is a
rotation about the z axis through an angle q1, and we will use our shorthand
notation. Frame 2 will now be at shoulder height with the y axis along the
line of the shoulder pivot:

2
1

1 1

1 1

0 0

0 0

0 0 1 0

0 0 0 1

T

c s

s c
=

−

Now, since the upper arm is offset from the shoulder, for frame 3 we should
step in the y direction to the line of the upper arm, distance a:

3
2

1 0 0 0

0 1 0

0 0 1 0

0 0 0 0

T
a

=

Now the shoulder axis rotates the upper arm q2 about the y axis of frame 3,
so we align frame 4 with that limb. But should we align it with x or z? It seems
logical to measure the arm’s angles up and down from “straight out,” so we
choose x.

4
3

2 2

2 2

0 0

0 1 0 0

0 0

0 0 0 1

T

c s

s c
=

−

Now we must “move down the upper arm” to the elbow, by a distance l, say.
This is in the x direction of frame 4, so

5
4

1 0 0

0 1 0 0

0 0 1 0

0 0 0 0

T

l

=

KINEMATIC CHAINS 175

176 ROBOTICS, DYNAMICS, AND KINEMATICS

In the Unimation Puma, the forearm is offset slightly from the upper arm,
but to avoid adding an extra frame, we can take account of this in the value
of a, above.

So now let us bend the elbow through q3 and line up frame 6 with the
forearm. Once again, the pivot is the y axis and zero defl ection is taken as
“elbow straight”:

6
5

3 3

3 3

0 0

0 1 0 0

0 0

0 0 0 1

T

c s

s c
=

−

Frame 7 is lined up with the forearm, but has moved down to the wrist, dis-
tance m:

7
6

1 0 0

0 1 0 0

0 0 1 0

0 0 0 0

T

m

=

Frame 8 follows the fi rst wrist rotation q4 about the local x axis.
Frame 9 “waves farewell” q5 about the local y axis.
Frame 10 “twists the screwdriver” q6 about the local x axis.
Finally, frame 11 “reaches” the tip of the “screwdriver.”

As an exercise, write down the corresponding transformations.
So, just what do we do with all these matrices? Each matrix transforms the

coordinates to the next-lower frame of reference; the fi nal transformation 0
1T

brings us to the reference frame 0. But remember that the matrices are
stacked up right to left, with the fi rst to be applied closest to the vector that
it multiplies, which in this case is the coordinate of a point with respect to the
gripper axes. So the product ends up as

11
0

1
0

2
1

3
2

4
3

5
4

6
5

7
6

8
7

9
8

10
9

11
10T T T T T T T T T T T T=

We have more matrices to multiply than there are axes, but they are all ele-
mentary rotations about an axis or translation along an axis. A prismatic joint
appears no different from translation along a limb. The only difference is that
the distance parameter will be a variable.

Although the fi nal matrix will be unique, there can be many ways to get
there. Rotations about the y axis can be changed so that the “travel” along a

limb is in the z direction, rather than x. But when the matrices are all multi-
plied together, they must give the same result.

There is another methodology that involves just one matrix for each actu-
ated axis. The matrices are not primitives, as above, but are generally the
product of three elementary moves.

9.3.2 D–H Parameters

The mechanism consists of a chain of links between one axis and the next.
The Denavit–Hartenberg convention is based on making all rotations and
prismatic actuations take place about the z axis of a frame:

• We have a set of axes at each joint. The z axes zn−1 and zn at each end of
link n are aligned with the axis of rotation or translation there.

• The x axis xn at the “outer end” is chosen so that it is normal to both of
these z axes.

• Now that we know xn and zn, we can defi ne yn to be perpendicular to
these to make up a righthanded set of axes.

• If the z axes are not parallel, the transformation for that link must
include a “twist” a about the x axis.

• The translation will consist not only of a displacement l in the x direc-
tion, but can also have a z component d to account for an offset between
the points where the “previous” and the “next” normals intersect the z
axis.

For a rotation q about the fi rst of these z axes, this results in a transformation
matrix between these frames:

cos sin

sin cos

θ θ
θ θ

−

0 0

0 0

0 0 1 0

0 0 0 1

1 0 00

0 1 0 0

0 0 1

0 0 0 1

1 0 0 0

0 0

0

l

d

−cos sinα α
ssin cos

cos sin cos sin

α α

θ θ α

0

0 0 0 1

=

− θθ α θ
θ θ α θ α θ

α

sin cos

sin cos cos cos sin sin

sin c

l

l−
0 oosα d

0 0 0 1

The link transformation can thus be defi ned by a set of D–H parameters:
the actuation angle q, the link length l, the link offset d, and the twist
a .

KINEMATIC CHAINS 177

178 ROBOTICS, DYNAMICS, AND KINEMATICS

But with the slightest change in the convention, the “formula” for the
transformation will be changed. It is my opinion that the approach of chaining
a set of elementary transformations is safer and better.

9.3.3 Inverse Kinematics

Of course, calculating the kinematics of the robot is only half the story. We
can now express the location and orientation of the gripper in terms of the
axis movements, but what we really want is to fi nd the axis values needed to
put the gripper in some desired position. This calculation is referred to as
inverse kinematics.

To fi nd the required joint angles, we can calculate the transformation rep-
resenting the desired position and then compare coeffi cients with the general
transformation that is full of sines and cosines of those joint angles. That
leaves us with some unpleasant simultaneous equations to solve. In fact, the
result of aligning the three rotations of the wrist joint of the Unimation Puma
through the same point reduces the algebra and trigonometry signifi cantly.
Nevertheless, the solutions are not unique.

For any given gripper position and attitude, there is an “elbow up” solution
as well as an “elbow down” one. These are doubled again with “lefty” and
“righty.” By “turning its back” on the work, the robot can turn its single “right
arm” into a left one.

Then, of course, not all positions have a solution. The desired position
might be just out of reach of the outstretched arm.

Another problem is singularity. The robot normally has 6 degrees of freedom.
But when two joints are in line, such as the wrist and “screwdriver twist,” the
degrees of freedom drop to 5. In the neighborhood of a singularity, one of the
axes will have to move rapidly for the slightest change of the target position.

Think of the problem of trying to watch aircraft as they fl y past straight
overhead.

Of course, the robot might not have six axes, and we might not wish to
move in all 6 degrees of freedom. For example, a “pick and place” robot might
be concerned with placing components on a circuit board. The components
are presented “fl at,” so we have no need to tilt them. We might, however, need
to rotate them about a vertical axis to align them with the board, in which
case we would need to move them to an accurate x–y position. We need a
fourth axis to lift them above the board before we place them, but this might
just travel between two stops.

Clearly, for a solution to make sense, there must be the same number of
control axes as we wish to obtain degrees of freedom. But what if our robot
has seven axes?

For various reasons, extra axes might be added, perhaps to allow the robot
to “reach around corners.” In this case a unique solution is impossible, not even
a choice of one in four. To extract a solution, an extra condition has to be
imposed, such as that one axis is held at an extreme or at zero defl ection.

9.4 ROBOT DYNAMICS

From the kinematics, we have a chain of matrices that can be multiplied
together to obtain the transformation matrix describing the motion of a robot.
The right hand column defi nes the location of the origin of the gripper, while
a 3 × 3 submatrix tells us the gripper’s orientation. From this submatrix we
can unravel the parameters in terms of pitch, roll, and yaw to obtain a vector
with six components:

x y z, , , , ,θ φ ψ()′

Each of these coeffi cients will be a function of all six joint axes

x

y

q q q q q q
q q q q q q

1 2 3 4 5 6

1 2 3 4 5 6

, , , , ,

, , , , ,

()
()

and so on.
Although solving to fi nd functions for the axis values might not be

easy, we can fi nd the effect of a “twitch” in one of the axes by partial
differentiation.

If we change just q1 by dq1, the change in x will be

d
q

dqx
x= ∂

∂ 1
1

If we change more of the joints, we will have

δ
θ

δθ
θ

δθ
θ

δθ
θ

δθ
θ

x
x x x x x= ∂

∂
+ ∂

∂
+ ∂

∂
+ ∂

∂
+ ∂

∂1
1

2
2

3
3

4
4

55
5

6
6δθ

θ
δθ+ ∂

∂
x

In fact, we can calculate all the partial derivatives to fi nd the Jacobian, a
matrix that has these partial derivatives as its coeffi cients.

Now, at any given position, these coeffi cients will just be numbers that we
can calculate, so that we can fi nd the effect of “nudging” the joints from

d
d
d
dq
df
dy

dq
dq
dq
dq
dq
dq

x

y

z
J

=

1

2

3

4

5

6

ROBOT DYNAMICS 179

180 ROBOTICS, DYNAMICS, AND KINEMATICS

If we are off target, we know the values we need to approach it, at least to a
fi rst approximation. We should therefore be able to calculate a set of axis
corrections to bring us closer, simply by inverting the Jacobian and multiply-
ing by the error vector.

Often this will work! But it is possible that the Jacobian is singular and has
no fi nite inverse. That is what happens at a singularity.

All is not lost. A method of successive approximations can bring us closer
to the target, or to the point in the “reachable” space that is closest to it. For
each axis in turn, inspect the corresponding column of the Jacobian and
decide whether a positive or a negative nudge will bring us closer to the target,
or whether that axis should remain the same. Apply the nudges and measure
the new error. When there is no sign of improvement, halve the nudge size.

The Jacobian also relates the gripper velocity to the velocities of the axes.
If the objective is to move it along a path at maximum speed, one or more of
the axes will be required to reach maximum velocity. As the gripper moves
along the path, the identity of the limiting axis will probably change. Once
again, the Jacobian and its inverse will be valuable tools in calculating the
axis drive values.

9.5 SIMULATING A ROBOT

Many years ago my son, Richard, helped me develop a package to simulate
and articulate robot mechanisms. A version has been converted into Visual
Basic and is available on the Web at http://www.essmech.com/9/5.htm.

The initial task is to design robot “parts,” sets of points in three dimensions
joined by a selection of lines. The data format is a set of coordinate triples
defi ning the points and a set of integer pairs defi ning the pairs of points to
be joined by lines.

These parts are then “assembled” to construct the robot. The robot can
take the form of a simple chain, such as a manipulator, or alternatively a robot
with multiple attachments such as articulated legs. The restriction is that there
are no closed chains.

So, how are the parts “attached”? Two points on a component of the
assembly are defi ned as “primary” and “secondary.” They will act as the
hinge about which the new part will rotate. Two points on the new part are
also defi ned as primary and secondary where the hinge will be attached. To
align the new part, the two primary points are moved together, by a simple
displacement, and the new part is rotated to bring the two vectors between
primary and secondary points into line. The hinge is now complete.

Each part or “limb” of the assembly now has a set of properties. First is
the identifi er of the shape that it takes—several parts can use the same shape.
Second is the identity of the “parent” limb, the part to which it is attached,
with a pair of integers to defi ne the primary and secondary points of the
parent that form the hinge. Another pair of integers will defi ne the primary

and secondary points of the part itself. Two variables describe the hinge angle
and its datum value. Finally, a transformation matrix describes the absolute
position and orientation of the part.

Each hinge is manipulated in turn. To change the hinge angle, a transfor-
mation is calculated that represents a rotation about the line of the hinge.
This is applied to the part that “owns” the hinge and also to any other parts
that are attached to that part.

The line of the hinge, defi ned by the primary and secondary points p0 and
p1 of the parent, is found by multiplying the parent’s shape coordinates by its
transformation.

So, how can we fi nd the transformation that represents rotation about this
line? Let us fi rst consider its 3 × 3 rotation matrix. Suppose that the direction
of the hinge axis is given by the unit vector c. What is the effect of rotation
about this axis through the origin on a general vector x?

We can break x down into a component in the direction of c and another
orthogonal to it:

c x c⋅()

x c x c− ⋅()

When we rotate x about c through an angle q, this perpendicular component
will become

x c x c− ⋅()() cosq

and there will be a second component the same size as

x c x c− ⋅()() sinq

but in a direction perpendicular to both c and the orthogonal component of
x. But we can “turn” the orthogonal component to line up with this direction,
simply by taking its cross-product with the unit vector c to get

c x c x c× − ⋅()() sinq

But c × c = 0, so this reduces to

c x× sinq

The three components can be combined to give the resulting vector

c x c x c x c c x⋅() + − ⋅(){ } + ×{ }cos sinq q

or

SIMULATING A ROBOT 181

182 ROBOTICS, DYNAMICS, AND KINEMATICS

c x c x c x⋅() −() + + ×{ }1 cos cos sinq q q

This is fi ne as a mathematical expression, but to be useful, we have to express
it in matrix terms for computing. We can rearrange the fi rst term as a matrix
multiplied by x. We can also express the cross-product c × x as the product of
x with a matrix.

So, in matrix terms we have the result

c c c c c c

c c c c c c

c c c c c c

c c

c c

c c

x

x
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

3 2

3 1

2 1

1

21

1 0 0

0 1 0

0 0 1

0

0

0

−() +

+
−

−
−

cos cos sinq q q
xx3

The braces give a “recipe” for a matrix that describes the rotary part of the
transformation, R. But we need to take into account that the line p0–p1 prob-
ably does not pass through the origin, so the matrix becomes 4 × 4 with a
translation component in the fourth column.

For the translation part, we fi rst subtract the coordinates of the primary
point p0 from x, then multiply by R and add p0 again. So the fourth column
of the transformation is given by

p p0 0− R

There is no need to record the bottom row of the transformation matrix, since
this is always (0 0 0 1). Although needed for the perfection of a mathemati-
cian’s algebra, the computer is perfectly capable of performing 3 × 4 matrix
operations without it.

The same sort of transformation is needed to align the hinge when attach-
ing a new part. In this case, the axis of rotation is the cross-product of the
two vectors that join primary and secondary points of the component and of
its parent. To calculate the angle of the rotation needed, we note that the
scalar product of the two vectors divided by the product of their moduli gives
us the cosine of the angle between them. The magnitude of the cross-product
divided by the product of their moduli gives us the sine.

Robot joints are not always revolute. Some are prismatic, where one part
slides linearly against another. This transformation is much simpler to calcu-
late than the rotary one. It simply involves adding a proportion of vector c to
every point:

1 0 0

0 1 0

0 0 1

0 0 0 1

1

2

3

kc

kc

kc

Now each part can be multiplied by its transformation to give its absolute
position.

One way to project the coordinates for plotting on the screen is to ignore
the y coordinate and simply plot the (x,z) coordinates. If desired, however, a
perspective projection is simple. Plot z/(y + r) against x/(y + r), where r is the
distance from which the robot is viewed.

Of course, the code on the Website is only the beginning. Once you have
designed and tested your robot, you need to rewrite a large part of the code
so that you can coordinate the simultaneous movement of the axes.

SIMULATING A ROBOT 183

185

10
Further Control Theory

So far, we have followed the trend and concentrated on developing linear
theory. But in the world of mechatronics, very few systems are linear. We have
already seen a simulation in Section 6.5 that shows that drive limitation can
totally change the way that a system performs. Nonlinearity should be a prime
consideration in designing the controller. We will also fi nd that nonlinear
elements can be very useful additions to the controller itself.

10.1 CONTROL TOPOLOGY AND NONLINEAR CONTROL

10.1.1 Feedback Topology

We have examined a position control system, a second-order system with a
single input. It has a characteristic equation determined by two coeffi cients
that are set by the position and velocity terms in the equation that determined
the acceleration. Putting it another way, if we decide on the roots that we want
for that characteristic equation, the feedback coeffi cients are uniquely
determined.

When there are more inputs than one, if all the state variables can be
measured, we have some freedom of choice in assigning the feedback coeffi -
cients. If the system is fourth-order and has two inputs, for example, there are
eight elements in the 2 × 4 feedback matrix. But these determine just four
coeffi cients in the characteristic polynomial.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

186 FURTHER CONTROL THEORY

Some arbitrary methods can be used to give up the freedom and make a
choice, but when the response is important, the matter requires careful
thought, not just concerning the roots that we might want.

Consider, for example, the pitch channel of an autopilot. There are two
inputs to this axis: the elevator control surface and the throttle. There are
several state variables, but the pilot’s concern is with the height and the air-
speed. The obvious strategy is to use the throttle to control the airspeed and
the “stick” to control the height. But that is not the way a human pilot thinks
of it.

If the airspeed drops, with the danger of the aircraft stalling, the pilot will
fi rst push the stick forward. The opening of the throttle is a second measure
that must rely on the smooth functioning of the engine for success. It makes
sense to use the throttle for controlling height instead, since opening the
throttle will increase the fl ow of energy to the system, meaning that if the
aircraft maintains constant speed, it will gain height.

We have two options for the topology of the controller. There is the “con-
ventional” one of feeding the airspeed back to the throttle and the height
back to the elevator, or the alternative of feeding airspeed to the elevator and
height to the throttle. When the system has constraints, the topology can
become even more important.

Many years ago I encountered a paper-coating process. After coating, the
paper passed through a drying oven before it could be cropped and stacked.
A vital factor in the operation is that the paper must not stop. If it does, a
large quantity of valuable product has to be scrapped and there is a risk of
fi re.

Somehow the fl ow must be maintained while a new roll is pasted on to the
tail end of the previous one, and for this the system uses a “magazine,” as
shown in Figure 10.1.

M

T

M

Float
 roll

Feed roll

Magazine

Paper roll

Unwinder
motor

Figure 10.1 Paper coating process.

CONTROL TOPOLOGY AND NONLINEAR CONTROL 187

The magazine contains a hundred feet or more of paper. As the roll comes
to an end, it is stopped and the tail clamped, while paper continues to fl ow
out of the magazine. If all is well, the new roll is pasted before the magazine
is empty and the roll can be brought up to speed. A motor with tacho feedback
controls the speed at which paper is fed into the magazine, feeding 150% of
the output speed when the magazine is almost empty and reducing to 90%
when it is uncomfortably full.

So, where is the problem? The paper roll is driven by an “unwinder motor,”
which is in turn controlled by the state of a “fl oat roll.” This is a loop in the
paper that takes up the fl uctuation between the paper roll and the magazine
feed motor. The entire variation of this loop might be two feet or less, and if
it hits its stop, the whole process is halted. The restart process after pasting
on a new roll must be performed with great delicacy.

The unwinder loop is indeed a diffi cult control problem. Although a second-
order equation links motor acceleration to the fl oat-roll position, its coeffi -
cients vary wildly. The moment of inertia of the roll will change by a factor of
60 between full and empty. Roll speed is an unreliable measure of paper veloc-
ity, so designing a system to have a good response across the range of operation
is far from easy. Perhaps a change in the feedback topology can help.

As inputs, we have the drives to the magazine feed motor and to the
unwinder motor; as outputs, we have sensors to tell us the positions of the
fl oat roll and the state of the magazine, plus the tacho output from the feed
motor. What should we feed back to where?

The most critical item in the system is the fl oat roll. A relatively small error
can bring disaster. Which input has the most immediate effect on this roller?
It is not the unwinder, to which the fl oat roll’s signal was originally applied,
but the magazine feed motor. Indeed, this motor has a tacho signal that allows
the fl oat-roll control loop to be tuned to perfection. So what of the unwinder?

The tacho gives a clear measure of the magazine replenishment speed, so
this can be fed back to the unwinder, mixed with the original nonlinear
demand function calculated from the magazine state. If there is a large excur-
sion in the startup transient, it is of no importance. The magazine can absorb
many tens of feet of overshoot with no problem whatsoever. Figure 10.2 shows
the difference between the two alternative control systems.

10.1.2 Nonlinear Feedback and Nested Loops

The “quality” of a mechatronic control system is measured not only by the
way it can respond to a change in target or set point but also by the way it
can withstand disturbances and recover from them.

As we saw in Section 6.5, the presence of drive limitation can completely
change the rules for setting the feedback coeffi cients. The choice will also
depend on the maximum size of the disturbance that can be expected. By
introducing a nonlinearity into the feedback, the response can avoid over-
shoot for any size of initial error or change in demand, but if a disturbing
force exceeds the full drive of the motor, it will always win the tug-of-war.

188 FURTHER CONTROL THEORY

In Section 3.4.5 we experimented with a simple fi rst-order system, the
relationship between the drive to a motor and its tacho output. We were able
to add a demand signal to the feedback, so that when

u k v v= −()demand

with k taking a large value, the motor will accelerate rapidly to reach the
demanded value, applying full drive for any substantial error.

(In principle, the value of k can be infi nite, switching the drive from one
extreme to another. When the control is discrete time, however, as in com-
puter control, a requirement for a stable response will put a limit on the
feedback value that will depend on the sample rate.)

We were then able to give vdemand a value proportional to the position error
to arrive at a closed-loop position control system. By limiting the value of

Float
 roll

Float
 roll

Feed roll tacho

Feed roll tacho

Feed roll motor

Feed roll motor

Magazine

Magazine

Unwinder
motor

Unwinder
motor

Nonlinearity

Nonlinearity

+

+

+

Original - with problems

Changed topology

Figure 10.2 Two control confi gurations.

CONTROL TOPOLOGY AND NONLINEAR CONTROL 189

vdemand, we were able to obtain a response without overshoot for any size of
disturbance.

The control appears as two “nested loops” as shown in Figure 10.3.
In Chapter 3, we met the problem of balancing an inverted pendulum. The

equations are almost identical with those that describe a bicycle that is being
ridden to follow a line. Although designing a controller for a bicycle might
not have great practical merit, it makes a very interesting design example.

There are four state variables that concern us. First is the distance from
the line, which we will measure from the rear wheel and call x. Next is the
angle of the bicycle to the line in radians, a . An important requirement is to
remain upright. The angle of lean can be termed q, and its rate of change is
given the label w . All the variables are positive to the right.

The input to the system is the handlebar angle u. The control task is to
devise a feedback arrangement that will express u in terms of x, a , q, and w
and give “good” control.

Let us suppose that the bicycle is proceeding at constant speed V and that
each angle is small enough that its sine can be approximated to its value in
radians.

First let us set up the state equations. The component of velocity perpen-
dicular to the line is V sin a , so, making the approximation a = sin a , we
have

ẋ V= a

A little geometric study will show that the rate of change of a is given in terms
of V, u, and the length L between the wheels as

ȧ = V
L

u

When we consider the lean of the bicycle, for the fi rst equation we have, of
course

q̇ w=

but the second is less obvious.

Motor+
Tacho Position

Limiter

Figure 10.3 Nested loops.

190 FURTHER CONTROL THEORY

The force exerted by the bicycle on the rider has vertical component mg,
where m is the mass of the rider. The horizontal component will be mg tan q,
so the horizontal acceleration of the rider in the direction of x will be g tan q.
The acceleration of the point where the rear wheel touches the ground is ẍ.
If we assume that the rider is a point mass a height h from the ground, the
angular acceleration is related to the difference between these two accelera-
tions as

h g x˙̇ ˙̇q q= −tan

From the fi rst two equations involving x and a , we see that

˙̇ ˙x V
V
L

u= =a
2

so, making the usual approximation concerning angles, we have our fourth
equation:

ẇ q= −g
h

V
Lh

u
2

In matrix form these four state equations become

�
�
�

�

x V

g h

α
θ
ω

=

0 0 0

0 0 0 0

0 0 0 1

0 0 0

+

x

V L

V Lh

α
θ
ω

0

02
2

u

We can substitute our feedback value for u

u ax b c d= + + +a q w

to obtain the matrix for the closed-loop system. Then we can fi nd the char-
acteristic equation as in Section 8.1.2. It might be surprising to fi nd that a, b,
c, and d must all be positive. To move to the left, we must fi rst turn the handle-
bar to the right.

The various strategies can be tried out on a simulation. To give it numerical
values, set h and L both to 1 m/s and V to 2 m/s.

When we come to consider the practical implementation of a controller,
we see again that the effect of constraints cannot be ignored. First there must
be a limit on the handlebar angle, either from considerations of hitting the rider’s
knees or from the danger of skidding. The limit might be taken as 0.5 radian.

The lean angle is limited in a different way. If it is too great, the bicycle
will skid and the rider will hit the ground. This is a condition that the control

CONTROL TOPOLOGY AND NONLINEAR CONTROL 191

must seek to avoid, rather than the sort of constraint that “stabilizer wheels”
would impose.

The nested-loop topology can be used to good advantage in devising a
controller, assuming that we can measure or estimate all the state variables.

The fi rst requirement is to remain upright, so this loop is closed fi rst. But
a demand signal is added into the loop as well:

u c d= −() +q q wdemand

It is clear why c and d must be positive. If the bicycle falls to the right, the
handlebars must be turned to the right. Their values can be tuned to give a
rapid and well-damped correction to any disturbance, while taking the han-
dlebar limits into consideration.

The next loop concerns the bicycle’s angle to the line, a . To turn the
bicycle, we require it to lean, and the lean loop takes care of the handlebars.
To turn to the left, we lean to the left

θ α αdemand demand= −()p

and to avoid disaster, we must limit qdemand to, say, 0.25 radian. It is qdemand that
must be limited in our simulation, not q.

If we are off the line, we demand an angle that will bring us back to it:

αdemand demand= −()q x x

We need yet another limiter. However far we are off the line, there is a limit
to the angle at which we wish to approach it.

If the system has been well designed, we can see the limits taking effect in
turn as we follow a large initial offl ine error to the right.

First we will see the handlebars twitch to the right as the bicycle is required
to lean into a turn to the left. For a short while the lean angle will be to the
left at the maximum value allowed, while the handlebars are also turned to
the left and the bicycle follows an arc of a circle. As the maximum heading
angle is approached, the bicycle becomes upright and steers in a straight line.
As the target line is approached, the bicycle leans to the right, turning to settle
on the target line.

The control loop has a variable structure as each limit comes into play.
Constant lean control is only a second-order system. Constant heading control
is third-order and it is only when errors are small that the full four orders
take effect. Provided the coeffi cients of q and w are well tuned, falling over
should not be an option. A wrong choice of a and b will see the bicycle swoop-
ing from side to side, but never leaning beyond the value of the demand limit.

I fi rst encountered the nested-loop approach when working on the design
of the roll channel of an autopilot many decades ago, but the principles are
still true today.

192 FURTHER CONTROL THEORY

In the roll channel of a rate–rate autopilot, the tightest loop is the feedback
around the aileron servomotor. The high-gain velocity control loop will cause
the motor to be driven to subdue any disturbances that wind gusts might cause
to the aileron control surface. A signal added into this loop will constitute a
velocity demand signal.

The next loop is based on the signal from a rate gyroscope. This measures
roll rate, and when fed into the aileron loop as a velocity demand, it causes
the control surface to move at a rate proportional to the roll rate. The loop
is closed through the response of the aircraft to the aileron control, so that a
signal added into the loop becomes a roll rate demand.

Now, a passenger airliner has some serious requirements that limit the
allowable maneuvers. The passengers would certainly be unhappy if the air-
craft rolled at greater than 3° per second, so it is important that a demand
signal injected into this loop be limited.

A position gyro that measures roll angle is the sensor for the next loop.
There are a few complications associated with creating the roll rate demand
from the roll angle error, but this loop now has an input that is the roll angle
demand. And, of course, since to roll to an angle greater than 30° would make
the passengers decidedly uncomfortable, there has to be a limiter on the
demand.

When an aircraft banks (rolls), it fl ies in a circle. It changes its heading at
a rate proportional to the roll angle, so when the pilot wishes the aircraft to
fl y on a compass heading, the error is fed into the roll demand.

When making the approach for a landing, a radio “localizer” beam results
in a signal representing the distance off the centerline of the runway. This
signal is added into the heading loop to perform the control. But when the
aircraft is “acquiring” the beam, the error is large, so we wish to limit the
heading change that it will cause. There is our fi nal limiter. The resulting
scheme, somewhat simplifi ed, is shown in Figure 10.4.

On my last day with the fi rm before leaving for doctoral studies, I experi-
enced a test fl ight with the autopilot. It worked.

10.2 PHASE PLANE METHODS

We have seen how easy it is to set up a computer simulation of a system and
include constraints with a simple “IF” statement. Even so, it is useful to have
non-computer-based methods for “back of an envelope” scheming.

10.2.1 Meet the Phase Plane

Many of the problems we encounter will be second-order. If we have just two
state variables, such as position and velocity, we can plot the state as a point
on graph. As time goes on, the state variables will change smoothly and the

point will move along a curve, a trajectory representing the response of the
system.

If all such trajectories lead to the origin of the error–velocity plane and
stay there, the system will be asymptotically stable. If any trajectory heads off
toward infi nity, we have an instability problem. But there is a third possibility.
A trajectory can form a closed loop, cycling in a limit cycle oscillation. This
can be annoying, but might not be fatal to the system meeting the design
requirements. If there is a region of the plane into which all trajectories lead
and from which no trajectory leaves, we have bounded stability.

How do we construct these trajectories? We start at some point (x,x
.
) and

begin to draw the trajectory—but in which direction?
We need to know its slope. We need to know dx

.
/dx, the rate of change of

the velocity with respect to the position, not to time. But maybe there is a
relationship between this derivative and the time derivative.

It can be shown that if f and x are both functions of time, then

df
dx

df
dt

dt
dx

=

so this is also true of x
.
, and we can write

Motor
+

Tacho

Aileron

Roll rate

Bank angle

Heading

Radio beam

+

+

+

Figure 10.4 A nested autopilot.

PHASE PLANE METHODS 193

194 FURTHER CONTROL THEORY

dx
dx

dx
dt

dt
dx

x
x

x
x

˙ ˙
˙̇

˙
˙̇
˙

= = =1

The slope of the trajectory is equal to the acceleration divided by the
velocity.

The differential equation will give us an expression for the acceleration at
any value of position and velocity, so by dividing this by the velocity, we will
have an expression for the slope of the trajectory through any point in the
plane.

Let us try it out on a second-order system that we have met before:

˙̇ ˙x x x+ + =5 6 0

Now

˙̇ ˙x x x= − −6 5

so

˙̇
˙ ˙
x
x

x
x

= − −6 5

Tracing a trajectory by working out its slope at the starting point, drawing a
small segment, working out its slope at the next point and so on threatens to
be a tedious task—but fortunately there is a shortcut.

At the point (0,1) the slope will be −5. At the point (0,2) the slope will be
−5. In fact, anywhere on the line x = 0 the slope will be −5. The line x = 0 is
an isocline, a place where the slopes are all the same.

We can easily spot any number of isoclines—in this case any line on which
x/x

.
 is constant, in other words, any line through the origin.
We can start straight in with the two axes. On the x axis, the slope will be

infi nity—the trajectories cross it at right angles. On the line x = x
.
 the slope is

−11, while on x = −x
.
 the slope is 1.

We can draw these lines and mark them with small ticks in the direction
of the trajectories, a sort of unfi nished spider’s web (see Fig. 10.5). Then we
can draw the trajectory from some starting point, bending it to obey the slope
as it crosses each isocline.

We need some more isoclines to get an accurate plot, especially three
particular isoclines in this case.

The line

5 6 0ẋ x+ =

is special because the acceleration there is zero. The trajectories cross it with
zero slope, parallel to the x axis.

But what about the line x
.
 + 2x = 0? The slope on this line is −5 − (−6/2),

which gives a result of −2.

In other words, on the line with slope −2, the trajectories also have slope
−2. Any trajectory reaching or starting on this line will be “glued” to it.

We fi nd that the same is true for the line

�x x+ =3 0

After drawing these onto the diagram, a good sketch of the phase plane can
be created (see Fig. 10.6).

Let us take another look at these “special” isoclines. If the trajectory
follows

ẋ x+ =2 0

this is not just the equation of a line; it is a differential equation. It tells us
that

x x t= ()0 e-2

which should not be surprising, since we have already found the general solu-
tion of this differential equation to be

x A Bt t= +− −e e2 3

The two special isoclines are the special cases where A or B is zero. But we
can learn a little more. As time advances, the e−3t term will decay faster than
the other term, so the trajectories will become asymptotic to the line

Figure 10.5 Axes and diagonals with ticks.

PHASE PLANE METHODS 195

196 FURTHER CONTROL THEORY

ẋ x+ =2 0

On the other hand, if we trace the trajectories backward into the past, the e−3t
term will become dominant, so the slopes will become asymptotic to −3.

As an exercise, sketch the phase plane for the system

˙̇ ˙x x x+ + =3 6 0

When you solve the characteristic equation to fi nd the “special” isoclines that
are asymptotes, you will fi nd that the roots are complex. These isoclines do
not exist. The system is underdamped and the trajectories perform spirals
around the origin as the system “rings.”

10.2.2 Dealing with Constraints

We seem to have devoted considerable effort to deal with a system that we
had already analyzed analytically. But the analytic method is tailored only
for linear systems. The phase plane comes into its own when there are con-
straints and other nonlinearities.

Let us again consider the system

˙̇x u=

where

u x x= − −5 6˙

Figure 10.6 Phase plane sketch.

But this time we have a limit on u, namely, |u| ≤ 4.
Close to the origin the drive is not saturated and the phase plane is just as

we have drawn it, but outside the linear region the system equation is

˙̇x = 4

or

˙̇x = −4

The boundary of the linear region will be the two lines

− − = ±5 6 4ẋ x

These are parallel to the line on which the drive is zero, so the linear region
appears as shown in Figure 10.7.

In the two other regions, the slope is given by

dx
dx x

�
�

= 4

and

dx
dx x

�
�

= − 4

The isoclines in both cases will be lines of constant x
.
, parallel to the x axis.

The trajectories will be parabolas, and the complete phase plane will
resemble Figure 10.8.

Figure 10.7 Linear region of phase plane.

PHASE PLANE METHODS 197

198 FURTHER CONTROL THEORY

The phase plane can deal with a wealth of nonlinearities, including friction
and deadband and, with a little ingenuity, backlash. It can also be used to try
out a variety of nonlinear feedback strategies.

One approach that has been fashionable is termed “fuzzy logic.” Instead
of a precise measurement of position and velocity, their values are simply
reported in terms such as “near zero,” “positive small,” “positive large,” and
so on. These divisions will divide the phase plane into a tartan pattern of
combinations of position and velocity ranges similar to that shown in
Figure 10.9. In each rectangle, the control designer can put any available
value of drive. On one hand this will overcome the weakness of linear feed-

Figure 10.8 Composite phase plane.

Near zero

Positive

Negative

Po
si

tiv
e

la
rg

e

Po
si

tiv
e

sm
al

l

N
ea

r
ze

ro

N
eg

at
iv

e
sm

al
l

N
eg

at
iv

e
la

rg
e

Position

Velocity

Figure 10.9 Fuzzy logic phase plane.

back strategies, but on the other hand there are some serious limitations on
performance.

The system can come to rest anywhere in the near-zero range of x with no
further attempt at correction, leaving a standing error. To avoid this, the near-
zero range can be omitted, leaving the zone boundary as the axis. But now
we can be left with a limit cycle or at best multiple overshoots as the drive
switches to and fro.

If the velocity is added to the position as continuous signals before the
values are cropped into ranges, we can, of course, have a crisp nonovershoot-
ing response. But this is not how the game is usually played.

10.3 OPTIMIZATION

If the requirement is simply one of stability, there are untold possible varia-
tions in the feedback parameters. The “by the book” control system designer
would like to fi nd a unique solution that is somehow “the best.” This is
optimal control.

10.3.1 Least Squares

If we are seeking the best, we must have a measure of the quality that we are
trying to optimize. The problem is described in the form of a cost function,
and the design task becomes one of minimizing that cost function. The cost
function could be something explicit, such as settling time or fuel consump-
tion, but a textbook favorite is least squares.

For the second-order system

˙̇x u=

we might choose a cost function

C ax bx cu= + +2 2 2˙

After some mathematical manipulation, we discover that the controller that
minimizes the integral of C is based on proportional feedback. Indeed, if
b = 0, so that the cost involves only the position and the input, the solution
has a damping factor of 0.707.

Examples can be found in process control, where “gentle” adjustment is in
order. The controller acts as a “regulator,” keeping the process at an optimal
setpoint while countering any disturbances.

However, we have already seen that if the input is limited, as in a servomo-
tor, the design should depend heavily on that limit. Selecting a quadratic cost

OPTIMIZATION 199

200 FURTHER CONTROL THEORY

function as the basis from which to design the controller loses any logical
reason when the coeffi cients of the cost function have to be “fi ddled” to give
an acceptable response.

10.3.2 Time-Optimal Control

When we have a “real” cost function, such as the time to reach zero error
with all derivatives at zero, the solution is usually bang-bang control. The
input is at all times at one or the other limit until the target is reached. Tech-
niques such as dynamic programming and the maximum principle can defi ne
the nature of the switching function, but it takes more ingenuity to fi nd the
actual switching times that will bring all the errors simultaneously to zero.

For our simple example of acceleration control, the maximum principle
deduces that just one change of sign is required to bring the system to the
target. But when? Imagine that you are driving from one traffi c light to the
next in minimum time, in a vehicle with just one gear and insuffi cient power
to “burn rubber.” As the light turns green, you must put the pedal to the fl oor.
At some point before hitting the next red light, you must apply full brakes.
When?

For minimum time, you must hit the brakes at the last possible moment
from which you can actually stop before the light. Your time-optimal trajec-
tory consists of a period of maximum acceleration switching to a period of
maximum deceleration, coming to rest at the target when zero drive is applied.
The “quality” of your control depends on your ability to model the braking
process accurately with some sort of switching curve. If your estimate of your
braking power is overoptimistic, or if there is any disturbance that pushes the
car on its way, then an overshoot is unavoidable.

If, on the other hand, the braking deceleration is underestimated, the set-
tling time will be slightly increased but there will be leeway to account for
mishaps. The nature of the control will be sliding. Brakes will be applied as
the switching line is crossed, but the greater-than-predicted deceleration will
take the state across the line again and acceleration will be applied. The drive
will switch rapidly to and fro, causing the state to follow the switching line.
There is a simulation example at www.essmech.com/10/3/2.htm.

Time optimization has much in common with the task of fuel optimization
in a lunar lander. Many years ago, our Cambridge group received a visitor
from Moscow. He told of the computational task of calculating the control
to bring the fi rst unmanned lunar probe to rest with minimum fuel
consumption.

The nature of the solution was the same as that for time-optimal control.
The probe is allowed to fall freely until the last moment, when continuous
full drive will just bring it to rest as it touches the surface. Unfortunately, at
that time the fi rst two or three probes had landed far from softly.

At the time that the fi nal burn is initiated, the probe might be falling at a
mile per second. A one-second error will leave the probe irrevocably heading

on a trajectory that would end a mile beneath the surface, if an impact did
not intervene!

My suggestion, that a deliberate underestimate of the thrust would cause
a minimal increase in the fuel actually consumed, was passed on very tactfully
by our professor. The next probe landed successfully.

Optimization might serve the purpose of giving a unique solution that can
be claimed to be “right,” but it is seldom the best in practice. The function
that needed to be optimized in this particular case was the probability of a
“successful” landing. Any fuel that remained after the landing was of no value
whatsoever.

OPTIMIZATION 201

203

11
Computer

Implementation

Having devised control algorithms and converted them to software of one
form or another, our next step is to integrate the system to include a computer
to run it on. For the experimental work, it has been easiest to exploit a retired
PC, but for serious product development, some sort of computing engine must
be integrated into the design as a whole.

There are some features that are common to the PC and to the humblest
of microcontrollers, which can greatly infl uence your approach to the task.

11.1 ESSENTIALS OF COMPUTING

As the computer has evolved, many ingenious variations have been tried.
Some have survived, while some have gone the way of the dodo. But some
underlying principles remain unchanged.

11.1.1 General Fundamentals

The simplest computing engine is the Turing machine. This is really a fi gment
of the mathematicians’ imagination, used to decide what is “computable” or
not. It has an input bit and a “state” signifying which “instruction card” is in
play. From these, the output bit and the next instruction to be used are
specifi ed.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

204 COMPUTER IMPLEMENTATION

When we get to a “real” computer, the essentials are memory, program
counter, and, of course, input and output. There are usually several sorts of
memory. The most easily accessible are “registers” such as one or more accu-
mulators to hold the value that any calculation has reached so far and RAM
(random access memory), an array of “pigeonholes” in which numbers can
be stored.

Any embedded system also has ROM (read-only memory) that contains
code and data that cannot change. To complicate matters, there is also
EAROM (electrically alterable ROM) to hold data that must survive the
system being switched off.

We now have a program that is stored in memory. In Von Neumann
machines, the great majority, this memory can double for both program and
data, although some other devices have separate memory formats. To access
a byte or word of memory, its address is placed on a memory address bus.

Most instructions will manipulate data, performing arithmetic or logic
operations on values in the memory or registers and going on to execute the
next instruction. The address of this instruction is held in the program counter.
Other instructions will infl uence the program fl ow, with branch or jump
instructions to allow a piece of code to be skipped or executed repeatedly.
There are also conditional jumps to determine whether to jump according to
the result of a comparison, so that a loop can be terminated after a number
of executions or on the result of some input value.

Input–output is, of course, a vital operation without which the computer
has no real purpose. The “classic” form of input is to transfer 8 or 16 bits,
represented by logic voltages on an array of input connections, to an accumu-
lator register within the processor. Input–output registers are often memory-
mapped; in other words, they behave as though they are memory at some
specifi c location, enabling values to be input and output as though reading
from or writing to memory.

11.1.2 Subroutines

In the evolution of the computer, an important “bright idea” was the condi-
tional jump. Another was the subroutine call. Suppose that we wish to perform
a special operation on a number, such as evaluating its logarithm. We can
write a block of code to perform the operation and include it in the software.
Now suppose that we wish to evaluate the logarithm of another number,
somewhere else in the program. We could, of course, plant a second copy of
the logarithm code in the program, but this would waste space.

Instead we can “call” a single copy of the logarithm routine from a number
of different parts of the program. This is different from a “jump,” since we
must know where to return afterward. We must also tell the routine the value
that we wish to convert, and in turn the routine has to convey the answer
when returning. This could be done by holding values in the registers, but the
accepted method is to use the “stack.”

Most processors have a stack pointer, holding a value that points to an area
of memory which is otherwise uncommitted. A PUSH command will save a
register’s value in the address pointed to by the stack pointer, which will
automatically increment (or decrement) to point to the next location. A POP
command will do the opposite, reading from the stack (after decrementing
or incrementing) and restoring the register. Various processors work in various
ways, incrementing or decrementing before or afterward, but the programmer
simply has to ensure that the PUSHes match the POPs.

Now, in a subroutine call, the program counter is pushed onto the stack,
and its value is retrieved when the code “returns.”

11.1.3 Interrupts

The next bright idea was the interrupt. Until then, the program execution had
depended on the program itself, together with any values that are input and
later used to infl uence conditional jumps. At various places in the software,
a call might be made to a subroutine to check whether a new byte was ready
for input. A loop that checks inputs in turn is termed a polling loop.

With an interrupt, the data-ready event grabs the attention of the computer
and takes it immediately to the routine that will deal with it. The machinery
pushes the return address onto the stack, together with the status register.
The interrupt routine then starts to execute. Its fi rst task is to save any register
that might be changed in the routine, so that afterward the computer can
pick up the action where it left off, just as though the interruption had not
happened.

The interrupt can be caused by the arrival of data, by an external device
being ready for another byte of output, by some sort of timer, or by an input
event such as the pressing of an emergency button.

Despite their great advantages, interrupts are a nightmare for real-time
troubleshooting. Except under the most artifi cial of conditions, the program
will never be executed the same way twice. What is more, interrupts lead to
a multitude of philosophical problems for the operating system designer.
What happens if the computer is executing one device’s interrupt routine
when another interrupt arrives?

This leads to the idea of an interrupt hierarchy. An interrupt is permitted
only if it is “more important” than any interrupt state existing.

But the philosophy gets deeper. When a data byte arrives on a high-speed
serial connection, there is an urgent need to read it before the next byte
arrives. The interrupt routine’s purpose is clear. It must copy the byte to a
“buffer” in memory, and then computing can resume.

What happens when the last byte is received and the data transfer is
complete, however? How does the software decide which task should take
precedence?

But fi rst there is a faster means of dealing with data transfer: direct memory
access (DMA).

ESSENTIALS OF COMPUTING 205

206 COMPUTER IMPLEMENTATION

11.1.4 Direct Memory Access

Some devices are capable of sending a burst of data. It is a wasteful operation
to execute an interrupt for each byte, with the need to save registers and
“environmental variables,” then to input the byte and save it in the correct
location, and then to restore the variables and return. Instead, DMA allows
an external device to gain access to the memory address lines and plant the
data in memory with no reference to the processor itself.

A “bus request” is pulled down, and when a “bus grant” is given, the
transfer can begin. In the case of the PC, the term “external” is a relative
matter. A DMA controller is built into the hardware and performs all the
hard work. This is primed with the start address of the memory to be fi lled
and the number of bytes or words to transfer. It clocks new bytes from the
peripheral and saves them sequentially in memory. When the last has been
received, it releases the bus request and, if desired, causes a hardware inter-
rupt so that the data can be dealt with.

Of course, the process can work in reverse with the contents of a memory
block being output.

11.2 SOFTWARE IMPLICATIONS

The ways of programmers are something of an enigma. On one hand, the
GOTO statement is deprecated, for very sound reasons, while on the other
hand fl ow diagrams are encouraged—yet every line in the fl owchart is the
embodiment of a GOTO statement!

In the early days of programming, overenthusiastic software writers were
often guilty of “spaghetti code,” with jumps in and out of loops that required
great patience to trace. Another vice was the use of identifi ers such as a or
i5, which gave no clue as to their purpose or meaning.

But surely the pendulum has swung too far the other way, when identifi ers
such as

CoGetInterfaceAndReleaseStream
CoMarshalInterThreadInterfaceInStream
StgGetIFillLockBytesOnILockBytes
CoGetCurrentLogicalThreadId
WdtpInterfacePointer_UserMarshal
WdtpInterfacePointer_UserUnmarshal

are quite typical within a popular operating system.
Software tools allow great slabs of code to be stacked up in a pile that

defi es the efforts of the programmer to read through and check the funda-
mental details. But when real-time code is to be written for an embedded
machine, there are great virtues in keeping it lean and mean. It is my opinion

that wherever possible, identifi ers should be no longer than two syllables,
whether they are variable names or procedures.

The choice of a computer language is not a simple matter. Language has
many dimensions. First there is the “speak,” the words and symbols that will
be used to defi ne the code. A page of Java will look very much like a page of
C, while the line-by-line text of a Visual Basic program will look very much
like other forms of Basic—and might even bring back distant memories of
FORTRAN.

Underlying the code is the structure of its execution. What makes Visual
Basic visual is its use of “forms” on which are placed “controls.” Each control
has a piece of code to deal with any “event,” such as the click of a mouse, the
operation of a “button,” or the change in a “slider.” This has every appearance
of being real time, but in most cases the interrupts are illusory. There is an
instruction, DoEvents, which really means “go and poll any other tasks that
might need attention.” A loop that does not include a DoEvents can lock
up the machine so that user inputs are ignored.

QBasic or Quick Basic, on the other hand, will allow an event to grab
control at the completion of any instruction. In general, the “lower” the level
of a language, the more control the programmer will have over the way the
code will be executed. C is close to assembly language and allows much
greater control.

The “programming environment” is another important factor. A “user-
friendly” system will check each line as it is entered and signal any syntax
errors. In Visual Basic, a click on the run icon is all that is needed to test the
code. When the program crashes, moving the cursor to any variable will cause
its value to be shown in a tool tip, while the offending line of code is high-
lighted in yellow. The programmer is faced only with the task of entering code
that is “obviously necessary,” plus the properties of controls, such as their
background color, and the layout of the forms.

At present there are at least two “fl avors” of C++ language. The Borland
version leans toward Visual Basic, with controls that can be dropped into
forms resulting in the automatic generation of the associated code. In the
Microsoft version, there is much more housekeeping to do. First you must
decide on what sort of project you require. Is it “bare screen,” or do you wish
to have forms and controls? Will it result in an exe fi le, a dll library, or a
DirectX fi lter?

Then, after a “wizard” has set up the empty project fi les for you—although
they might already look pretty crowded—you have to be concerned with
both code fi les and “header” fi les that defi ne how your functions are to be
called.

Before you can run your project, you have to “build” it. Only then do you
see a list of your errors. The omission of a single } brace can result in a list
of a dozen or more errors. The “friendly features” are not made very clear in
the documentation or help fi les, but after much exasperation you fi nd that
clicking on a line warning you of an error will actually take you to the offend-

SOFTWARE IMPLICATIONS 207

208 COMPUTER IMPLEMENTATION

ing line itself. By inserting breakpoints, you can achieve the same display of
variable values that Visual Basic offered so easily.

So, why endure the hardships of riding bareback? C gives access to the
“inner workings” of the machine in a way that is protected from VB users.
Its closeness to machine code allows it to perform tasks that in VB would
require the writing of special library routines—and these would probably be
written in C in preference to assembler.

In C, you certainly have more control of the way the code is executed, but
the promise of more effi cient code than in Basic might be a false one. Con-
sider the artifi cial and useless piece of Basic code:

DEFINT A-Z
DIM a(10),i
i = 5
a(i) = a(i) + i

The array and a variable are defi ned as integers, the value 5 is placed in i,
and then the ith element of a() has i added to it. It looks as though the pointer
into the array will have to be calculated twice and that a C version could be
much more effi cient:

void main(){
int a[10], i;
i=5;
a[i]+=i;
}

The cryptic fi nal line of the C version certainly looks more compact. But
Quick Basic has an optimizing compiler. When the resulting assembler code
is listed, we see

mov I%,0005h
mov si,I%
sal si,1
mov ax,I%
add A%[si],ax

which really could not be more effi cient. In the last line, the value of i is added
straight into the array, using an index that has been loaded with the correct
value, then shifted left to make it a word pointer.

The C version is converted by Visual C++ to give

mov WORD PTR _i$[ebp], 5
movsx eax, WORD PTR _i$[ebp]
mov cx, WORD PTR _a$[ebp+eax*2]

add cx, WORD PTR _i$[ebp]
movsx edx, WORD PTR _i$[ebp]
mov WORD PTR _a$[ebp+edx*2], cx

The addition is performed in a register that then has to be saved.
Writing code for a simple embedded processor is likely to have even fewer

home comforts. It will involve fi rst keying in the code as a text document.
The assembler (or maybe a C compiler) is then invoked to convert the code
and produce a binary “object fi le.” This must then be downloaded to the
processor in yet another operation. This must all be achieved before the code
can be tested, and additional means must be devised for monitoring what the
software is actually doing.

11.2.1 Structured Code

We have seen that a subroutine or “procedure” economizes on the space of
code that might otherwise have to be repeated. It has another important role,
however. It is a module of code that can be tested exhaustively and can then
be called with a simple well-named command. A lengthy matrix inversion
routine could appear in the program fl ow as just

invert a()

When the code is written at the assembler or C level, good structure is even
more important. It is also essential to document the code with clear com-
ments. The choice of identifi ers can do much to improve readability, using
verbs for procedures and nouns for variables.

I am greatly in favor of the use of “pseudocode,” a language that exists in
the mind of the program writer. Consider the task of writing code for a four-
legged walking robot with vacuum grippers on its feet. A pace could involve
moving each foot forward in turn and might be represented as follows:

Sub Pace()
 For foot = frontleft to hindright
 Lift foot
 Advance foot
 Place foot
 Next foot
End Sub

At this level, before getting bogged down in software details, it will be clear
that taking a second pace will present the problem that all four feet are
already in the forward position!

So it is no effort to make a note that when writing the Advance subroutine,
while “this” foot is being moved forwards the other feet must be moved one-
third of a stride to the rear.

SOFTWARE IMPLICATIONS 209

210 COMPUTER IMPLEMENTATION

In fact, this code example could become Visual Basic code as it stands. For
other implementation, such as in assembly language or C, it could appear as
the “remarks” that are added to make the code meaningful.

* Sub Pace()
PACE LDAA #FRONTLEFT * For foot = frontleft
 STAA FOOT * to hindright
PACE1 JSR LIFT * Lift foot
 JSR ADVANCE * Advance foot
 JSR PLACE * Place foot
 INC FOOT * Next foot
 LDAA FOOT
 CMPA #HINDRIGHT
 BLE PACE1
 RTS * End Sub

In this example, the pseudocode can burrow down a level to defi ne

SUB lift(foot AS INTEGER)
 Unstick foot
 target(foot).z = target(foot).z+100
END SUB

in which we assume that there is an interrupt routine running in the back-
ground that handles position control.

The Unstick routine will output the signal that releases the vacuum, then
will pause for an instant. The target line could instead output a value to
an independent microcontroller dedicated to the control of that particular
leg.

11.3 EMBEDDED PROCESSORS

While the microprocessors at the heart of a personal computer are still evolv-
ing in speed and complexity at an increasing rate, some of their humble
cousins have remained in fashion for much longer. These are the simple pro-
cessors that are embedded in washing machines, toys, clock radios, auto-
mobiles, and a host of other appliances.

A general electronics catalog has over 50 pages of microprocessors and
microcontrollers, some of them from families virtually unchanged over 20
years. Of course, there have been numerous innovations, such as the ability
to communicate over USB and CAN-bus, but assembly code written years
ago can often still be adapted with relative ease.

The PC user may grumble at the length of time taken for the system to
load, but will not consider the “boot” process as a personal worry. For the

EMBEDDED PROCESSORS 211

designer of an embedded system, the entire startup process from the fi rst
application of power must be part of the design.

11.3.1 Essentials of a Microprocessor

The early 8-bit chips consisted of the processor alone, plus a number of inter-
nal registers. Random access memory (RAM) for calculations and read-only
memory (ROM) to hold the program had to be wired on to address and data
buses, usually with extra chips for address decoding plus a crystal to set the
clock frequency.

Many of today’s chips aim for an “all in one package” approach. They may
have 256 bytes or more of RAM, suffi cient for many embedded tasks, plus
several kilobytes of program memory. For laboratory and development work,
this can conveniently be EAROM, electrically alterable ROM. The contents
of the EAROM can be changed by the processor itself, although this is often
much slower than normal RAM operations. The data will remain unchanged
when the processor is switched off and on again.

This is a comfortable size of program to handle in assembly language, but
much larger memories are common. A “thumb drive” or MP3 player with less
than 64 Mbyte of memory would be regarded as tiny.

Just as programming languages have their faithful adherants, enthusiasts
will concentrate on a particular microcomputer system. My colleague, Mark
Phythian, is especially supportive of the PIC computer. He has designed the
simple application described below, in which it serves as an analog-to-digital
converter, encoding and transmitting the results over a serial interface to the
host PC.

By using this interface, many of the problems of the Windows operating
system are bypassed. A Visual Basic program is outlined below that includes
an MSComms component to handle the serial communications. The values
of four channels are displayed on a form as a sort of “oscilloscope trace”.
From here it is a small step to using the chip for online control.

The chip is a PIC16F88 from Microchip. It has four 10-bit analog input
channels, 4 bits of logic input, and 4 output bits. It also has two interrupt lines
and a bidirectional serial interface. Two transistors with four resistors and a
diode are needed to convert the serial logic levels to something compatible
with the PC’s RS232 interface, but with those the circuit is complete.

The circuit diagram in Figure 11.1 shows a potentiometer and pushbuttons
that can be used to test the circuit’s operation, but these are not part of the
basic design.

When writing code from fi rst principles, you can make up the command
rules as you go along. But it is important that they be strictly structured in a
well-defi ned protocol.

This particular software operates as follows. The PC sends a command as
a single byte. The PIC responds with the same byte, followed by any data
bytes that are requested.

212 COMPUTER IMPLEMENTATION

Hex $30 returns 8 bytes, representing four channels of 10-bit ADC
readings.

Hex $40 returns 4 bytes, representing four channels of 8-bit ADC
readings.

Hex $50 returns 1 byte, with the lower 4 bits representing the input bits.
Hex $60 to $6F will cause the lower 4 bits to be sent to the output pins.

For the two interrupt pins on the PIC (active low):

INT1 sends 1 byte hex $21 character.
INT2 sends 1 byte hex $22 character.

Even with such a simple chip, it is not necessary to revert to assembly lan-
guage. A Basic cross-compiler can be purchased for about thirty Australian
dollars from http://www.oshonsoft.com/, and it is for this system that Mark
has written his code.

Even so, it is necessary to attend to every detail of setting up the chip’s
state, defi ning variables and enabling the necessary interrupts to handle
communications:

‘ PIC_IO_BAS.bas PIC serial IO interface by Mark Phythian
‘ Uses Microchip PIC16F88 processor running at 8MHz
internal RC Osc.

‘ defi ne variables

VCC
+3 to 5V 0V

PIC_IO using
PIC16F88

OUT0
OUT1

RX
OUT2 OUT3

TX
INT1
INT2

IN2
IN3
AN0
AN1 AN2

AN3
IN0
IN1

ANx = ANALOG INPUTS 0 to VCC variable

INx = DIGITAL INPUTS 0 or VCC

OUTx = DIGITAL OUTPUTS 0 or VCC

INTx = DIGITAL TRIGGER INPUTS 0 or VCC

TX & RX from PC serial interface

VCC
VCC

OV

OV

1K

1K

BC338

BC338
TO PC
COMM
PORT

FROM
PC
COMM
PORT

10K 10K

VCC

OV

VCC

0V

VCC

10K

10K

10K

IN914

Figure 11.1 Mark Phythian’s circuit of single-chip microcomputer ADC.

EMBEDDED PROCESSORS 213

Dim adtable(4) As Word ‘ table to hold adc results
Dim chan As Byte ‘ channel number
Dim val As Word ‘ word size adc result variable
Dim oldb As Byte ‘ last portb value
Dim char As Byte ‘ single character command
Dim command As Byte ‘ upper 4 bits of command
Dim n As Byte ‘ lower 4 bits of command
Dim m As Byte ‘ byte size temporary variable
Dim wrd As Word ‘ word size temporary variable

‘ setup PIC
OSCCON = 0x72 ‘ set internal RC select to 8MHz
TRISB = %11000000 ‘ set PORTB 0-5 pins as outputs,

‘6 & 7 inputs
Gosub initad ‘ initialise adc
PIE1.RCIE = 1 ‘ enable UART RX interrupt
OPTION_REG = 0x7f ‘ enable PORTB weak pullups for
 inputs 6 & 7
Hseropen 57600 ‘ set UART BAUD rate
INTCON = 0xc8 ‘ enable GIE, PEIE and RBIE

‘ initialise variables
PORTB = 0x00
oldb = PORTB And 0xc0 ‘ last value of PORTB bits 6 &

‘7 for change of state
WaitMs 1000
Hserout “OK” ‘ startup ok
WaitMs 100

‘ endless loop converting as fast as possible
main:

ADCON0 = 0xc1 ‘ select channel 0 in bits
 ‘5,4,3 of ADCON0

For chan = 0 To 3
 Gosub adconv ‘ go to conversion routine
 val.HB = ADRESH ‘ save high byte (upper 2 bits

‘only)
 val.LB = ADRESL ‘ save low byte
 adtable(chan) = val
 ADCON0 = ADCON0 + 0x08 ‘ increment selected channel
Next chan
Goto main ‘repeat forever
End

214 COMPUTER IMPLEMENTATION

‘ Initialise ADC
initad:
TRISA = %11111111 ‘ set portA as input
ANSEL = %00001111 ‘ set PORTA pins 0-3 as analog

‘inputs
ADCON1 = 0x80 ‘ set 10 bit A/D result format
 ‘ right justify ADRESH/L
ADCON0 = 0xc1 ‘ set A/D conversion clock to
 ‘internal source,
 ‘ turn on adc
Return

‘ Adc conversion routine
adconv:
High ADCON0.GO_DONE ‘ start the conversion
While ADCON0.GO_DONE ‘ wait until conversion is
 ‘completed
Wend
Return

On Interrupt
Save System
‘ check for PORTB change of state on bits 6 & 7
If INTCON.RBIF = 1 Then ‘ test if portb change fl ag is on
 n = PORTB And 0xc0
 INTCON.RBIF = 0 ‘ reset RBI fl ag
 n = oldb Xor n
 If n.7 = 1 Then ‘ if bit 7 changed
 If oldb.7 = 1 Then ‘ if bit 7 changed to 0
 Hserout 0x22 ‘ send a “ for INT2 input trigger
 Endif
 Else
 If n.6 = 1 Then ‘ if bit 6 changed
 If oldb.6 = 1 Then ‘ if bit 6 7 changed to 0
 Hserout 0x21 ‘ send a ! for INT1 input trigger
 Endif
 Endif
 Endif
 oldb = PORTB And 0xc0 ‘ set oldb to new PORTB value
Else

‘ test for serial command received
 If PIR1.RCIF = 1 Then ‘ test if RXer fl ag is on
 PIR1.RCIF = 0 ‘ reset RCI fl ag
 Hserget char ‘ get the received character

EMBEDDED PROCESSORS 215

 command = char And 0xf0 ‘ command is upper 4 bits
 n = char And 0x0f ‘ number is lower 4 bits

‘ fetch 10 bit adc values, returns 2 bytes each,
‘ command letter 0 (zero)
 If command = 0x30 Then
 Hserout char ‘ echo command
 For n = 0 To 3
 Hserout adtable(n) ‘ send 10 bit value in 2

‘bytes
 Next n
 Else

‘ fetch 8 bit adc values, returns 1 byte each, command
letter @
 If command = 0x40 Then
 Hserout char ‘ echo command
 For n = 0 To 3 ‘ D command requests all 4
 wrd = adtable(n)
 m = ShiftRight(wrd, 2)
 Hserout m ‘ send 8 bit value as 1 byte
 Next n
 Else

‘ read inputs bits PA4-7, returns 1 byte, command
‘letter P
 If command = 0x50 Then
 Hserout char ‘ echo command
 n = PORTA And 0xf0
 n = ShiftRight(n, 4)
 Hserout n ‘ send 4 bits in low part

‘of byte
 Else

‘ set outputs, command letters (from $60-$6F)
‘,a,b,c,d . . . o
 If command = 0x60 Then
 Hserout char ‘ echo command
 m = n And 0x03 ‘ arrange bits to Port B

bits 4,3,1,0
 n = n And 0x0c
 n = ShiftLeft(n, 1)
 PORTB = m Or n ‘ set output bits from

number n
 Endif

216 COMPUTER IMPLEMENTATION

 Endif
 Endif
 Endif
 Endif
Endif
exit:
Resume

This code and the code for the Visual Basic test program can be found at
www.essmech.com/11/3/1.htm.

The Visual Basic form has an MSComms control named Serial and a
button with the name and caption Quit. Its code is as follows:

Dim bits10 As Byte ‘For holding command
 defi nitions
Dim bits8 As Byte
Dim getpins As Byte
Dim setpins As Byte
Dim bytes_in() As Byte
Dim Adc(3) As Single ‘To hold ADC values between

‘-1 and 1
Dim stopped As Boolean

Private Sub Form_Load() ‘Execution starts here
Dim i As Integer
Show
Serial.Settings = “57600,n,8,1” ‘make sure same

‘baud as PIC
Serial.CommPort = 1
Serial.Handshaking = comNone ‘no handshake
Serial.InputMode = comInputModeBinary ‘not ASCII text
Serial.NullDiscard = False ‘treat nulls as
 ‘valid characters
Serial.PortOpen = True ‘open port

bits10 = &H30 ‘encode 4 channels, return 8 bytes of
‘10-bit data

bits8 = &H40 ‘encode 4 channels, return 4 bytes of
‘8-bit data

getpins = &H50 ‘read input pins, return in lower four
‘bits

setpins = &H60 ‘add required bit values to the lower 4
‘bits

Print “Cannot fi nd PIC” ‘Write warning message
Command setpins ‘This will hang if PIC is not

 present

EMBEDDED PROCESSORS 217

Scale (0, 1)-(1000, -1)
Cls ‘Erase the message if all OK
stopped = False
Do Until stopped
 For i = 1 To 1000
 Adc10 ‘contains DoEvents
 PSet (i, Adc(0)), vbBlack ‘Plot the ADC values
 PSet (i, Adc(1)), vbRed
 PSet (i, Adc(2)), vbBlue
 PSet (i, Adc(3)), vbGreen
 Next
 Cls ‘Clear at end of trace
Loop
End ‘End if the loop exits
End Sub

Sub Command(a As Byte) ‘will fl ush buffer if necessary,
‘hang if no PIC

Dim b(0) As Byte
b(0) = a
send b()
Do ‘Wait for the echo byte
 get_bytes 1
Loop Until bytes_in(0) = a
End Sub

Private Sub Quit_Click()
stopped = True
End Sub

Sub Adc10() ‘Get four ten-bit values
Dim i As Integer
Command bits10
For i = 0 To 3
 get_bytes 2 ‘next line scales to range

‘-1 to 1
 Adc(i) = (256! * (bytes_in(1) And 3) + bytes_in(0)) /

512! - 1
Next
End Sub

Sub Adc8() ‘Get four eight bit
‘values

Dim i As Integer
Command bits8
For i = 0 To 3
 get_bytes 1

218 COMPUTER IMPLEMENTATION

 Adc(i) = bytes_in(0) / 128! - 1 ‘scale
Next
End Sub

Sub get_bytes(n As Integer) ‘Read from serial port to
‘bytes_in()

 buf n ‘wait until n bytes
‘received

 Serial.InputLen = n
 bytes_in() = Serial.Input
End Sub

Sub buf(i As Integer) ‘waits for buffer to hold
‘i bytes

 Dim j As Integer
 Do
 DoEvents
 j = Serial.InBufferCount
 Loop Until j >= i
End Sub

Sub send(a() As Byte)
 Serial.Output = a()
End Sub

The alternative to using a language such as Basic or C for the PIC code is to
use assembly language. Mark Phythian has provided a sample of the equiva-
lent code for this example, with just a small portion of the code involved:

; defi ne variables
adtable EQU 0x39 ; adc result table 8 bytes
chan EQU 0x41 ; channel no
val EQU 0x42 ; word size adc result variable
oldb EQU 0x44 ; last portb value
char EQU 0x45 ; single character command
command EQU 0x46 ; upper 4 bits of command
n EQU 0x47 ; lower 4 bits of command
m EQU 0x48 ; byte size temporary variable
wrd EQU 0x49 ; word size temporary variable

; Code executes here at start up
 ORG 0x0000 ;Location to put the code
 BCF PCLATH,3
 BCF PCLATH,4
 GOTO start

EMBEDDED PROCESSORS 219

 ORG 0x0004 ;Place interrupt code here at
address 0004

 MOVWF W_TEMP ; save registers
 SWAPF STATUS,W
 CLRF STATUS
 MOVWF STATUS_TEMP
 CALL ISR ; call interrupt service

routine
 SWAPF STATUS_TEMP,W
 MOVWF STATUS
 SWAPF W_TEMP,F
 SWAPF W_TEMP,W ; restore registers
 RETFIE ;return from interrupt

start:
; setup PIC
 BSF STATUS,RP0 ; select page 1
 MOVLW 0x72
 MOVWF 0x0F ; set internal RC select to 8MHz
 MOVLW 0xC0
 MOVWF 0x06 ; set PORTB 0-5 pins as outputs,

;6 & 7 inputs

; initialise adc
 MOVLW 0xFF
 MOVWF 0x05 ; set portA as input
 MOVLW 0x0F
 MOVWF 0x1B ; set PORTA pins 0-3 as analog

;inputs
 MOVLW 0x80
 MOVWF 0x1F ; set 10 bit A/D result format

;right justify ADRESH/L
 BCF STATUS,RP0 ; select page 0
 MOVLW 0xC1
 MOVWF 0x1F ; set A/D conversion clock to

;internal source,
 ; turn on adc
 BSF STATUS,RP0 ; select page 1
 MOVLW 0x7F
 MOVWF 0x01 ; enable PORTB weak pullups for

;inputs 6 & 7

; setup UART
 BSF STATUS,RP0 ; select page 1
 BSF 0x0C,5 ; enable UART RX interrupt

220 COMPUTER IMPLEMENTATION

 MOVLW 0x08
 MOVWF SPBRG ; set UART BAUD rate 57600
 BSF TRISB,2
 BSF TRISB,5 ; set PORTB bits 2 and 5 as

;outputs for UART
 MOVLW 0x24
 MOVWF TXSTA ; enable Transmitter
 ; set High BAUD rate select bit
 BCF STATUS,RP0
 MOVLW 0x90
 MOVWF RCSTA ; enable Serial port,
 ; continuous enable receiver
 MOVLW 0xC8
 MOVWF 0x0B ; enable GIE, PEIE and RBIE for

;UART

; initialise variables
 BCF STATUS,RP0 ; select page 0
 CLRF 0x06 ; clear PORTB
 MOVLW 0xC0
 ANDWF 0x06,W
 MOVWF oldb ; last value of PORTB bits 6 & 7

;for change of state
; Send “OK” ; start up ok
 MOVLW “O”
 CALL TXD
 MOVLW “K”
 CALL TXD

This does not yet include the receipt and execution of commands. It is clear
that the use of the Basic compiler saves a large amount of effort.

221

12
Machine Vision

The broad subject of machine vision has many levels of complexity. The sim-
plest is the use of a single photosensitive detector to locate the boundary of
a brightness change, so that, for example, a factory vehicle carrying parts can
follow the edge of a line painted on the fl oor using “if it’s bright, steer left; if
it’s dark, steer right.”

At the other end of the scale is a high-resolution color vision system in
which the computer must recognize some object by its shape or texture, even
though it might be partially obscured.

Some of the associated mathematical and computational techniques are
concerned with improving the “quality” of the appearance an image, while
others relate to extraction of data from the image such as the fi nding of edges
and other features.

12.1 VISION SENSORS

In Chapter 2, we met a hierarchy of optical sensors that can be ranked in
order of increasing complexity as follows.

12.1.1 Single-Point, Binary

This is “pair” consisting of a single LED and a single phototransistor:

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

222 MACHINE VISION

• A refl ective opto switch to detect a dark mark on a light background or
vice versa.

• A slotted opto switch, where the sensors are mounted to face each other
and indicate when there is an obstruction in the slot.

12.1.2 Single-Point, Analog

A single photocell measuring brightness is a popular sensor for a “Micro-
mouse,” a robot fi nding its way through a maze, where brightness can be used
as a crude measure of distance from a wall.

A single sensor can be given the attributes of a linescan device by scanning
it, such as with the use of a spinning mirror.

An optically based sensor that has had wide adoption as a “quick fi x” aid
to navigation is the Sick sensor. This uses just such a spinning mirror to scan
with a laser beam. The additional factor is that the beam is pulsed. High-
frequency circuitry measures the time of fl ight of the return journey to and
from the point of contact. In this way, a map is obtained of the range from
the sensor as measured in the scanning plane.

There is much to criticize with this sensor, mainly because of its serial
output format. It was originally designed simply as a safety device to ensure
that nobody entered the proximity of a dangerous object such as an industrial
robot, so the output of image data was intended as a diagnostic tool. The basic
scanning rate is 40 scans per second, with maximum resolution representing
samples at quarter-degree intervals. Even at 500 kHz baud rate, however, the
serial output cannot keep up with the highest scan speed at the highest
resolution.

12.1.3 Linescan Devices

These are a linear array of sensors, giving data for one line of an image. As
in the fax machine, a two-dimensional image is built up by the object moving
past the array.

12.1.4 Framescan Devices

A two-dimensional image is captured in one hit. There may be a single frame
of data, relating to a rectangular array of pixels, or a stream of frames con-
stituting a “movie.”

12.2 ACQUIRING AN IMAGE

For the single-pixel or the linescan sensor, simple bit-level input will be
similar whether the system is built around a single-chip microcontroller or a

PC. It is when we wish to acquire a full two-dimensional image that we are
faced with a confusion of choices.

12.2.1 DirectX and VFW

For minimum effort, it is easy to purchase a low-cost Webcam and plug it into
a USB port on a PC. The driver software that comes with it will enable you
to see moving images on the screen, and freeware packages will let you com-
municate face-to-face with your friends.

There are many cards on the market that can tune a television signal or
receive a “composite video” signal (the yellow socket on the VCR). They
“stream” the data onto the computer screen, but again we must break into the
entertainment-directed technology if we are to make serious use of the signal.

We must answer the problem of putting image data where you can attack
it with analysis software.

Close to the hardware level, the “driver” inputs bytes of data and packs
them into an array. It then signals software at the next level to indicate that
a frame of data is ready, while data bytes continue to be packed into a second
frame. An early standard for using such data is called Video for Windows
(VFW). An OCX control for Visual Basic can be written to capture data at
this level. Details of such an OCX, including the source code, can be found
on the Web at www.essmech.com/12/2/1.htm.

As soon as you place this control in your VB form, you can access its
properties and methods. One of these is SnaptoArray (I admit that it has more
than two syllables!), which will copy the next frame of image data that arrives
into an array that you name. What you do with the image is then up to you.

Vision and other media processes are supported in later versions of
Windows by a software suite called DirectX. The software developer’s kit can
be downloaded free from the Microsoft site—although it is several hundred
megabytes in size. It includes DirectShow, which deals specifi cally with video
streams.

The package is designed around “drag and drop” concepts, in which
“fi lters” are linked in a “graph.” A handy tool for building such graphs comes
with the package. It is called Graphedt.exe.

The fi lters are unlike any of the fi lters we have met in the control sections.
One example of a fi lter is a videocamera! The fi lter appears as a rectangle on
the chart. In general, it has input and output “pins” that are notional, not
physical.

A “video capture fi lter” such as a Webcam might have two output pins,
capture and preview. A right click on one of the pins can show its “proper-
ties,” the format of the data that can be taken from it. A typical value for a
Webcam is “Major type: video—subtype RGB24.”

A right click inside the rectangle itself will present the choice of fi lter
properties. In this case, the choice will open a window in which video source
and video format can be set or changed.

ACQUIRING AN IMAGE 223

224 MACHINE VISION

The other option when the output pin is right-clicked is render pin. A
second box will appear, with label video renderer, with its input pin con-
nected to the output pin of the Webcam rectangle.

In a control bar above are the green triangle and red square for media run
and stop. A click on the run icon causes a window to appear with the moving
Webcam image in it.

Of course, this is just the tip of the iceberg. There are fi lters for compress-
ing video, for rendering audio, for interleaving video and audio streams in an
“AVI Mux,” and a fi le writer to record your video to disk. These are just a
few of the hundred or more fi lters that are likely to lurk on your machine.

So, how is video captured for analysis? The analysis can be performed
without capturing it at all. Instead, the analysis software is written as yet
another fi lter that can accept the incoming video stream in real time and pass
on the desired conclusions.

The few simple lines of code that are required to process an image, say, to
reduce objects to their edges, have to be “topped and tailed” with a mass of
“include” references and other housekeeping. However, a colleague, Mark
Dunn, has contributed a template and a “wizard” that have been placed on the
Website. These will enable you to construct your own image processing fi lters.
You will also fi nd examples that you can modify for your own purposes.

Provided you do not mind depending on one specifi c commercial operating
system, you will fi nd this a satisfying and rapid way to arrive at machine vision
solutions. You may instead prefer to take a “bottom-up” approach.

12.2.2 Video Chips

As USB Webcams have tumbled in price, their cousins have invaded mobile
telephones. There is a growing market for video subassembly modules for
embedding in consumer products, for both low-resolution “fun” applications
and high-resolution cameras.

The computers destined to handle these signals are far removed from the
PC. They are single-chip microcontrollers, such as the reduced instruction set
computer (RISC) ARM series. Nevertheless, once the image has been cap-
tured into an array, the analysis procedures they apply are almost identical.

12.3 ANALYZING AN IMAGE

Image data bytes fl ow at an immense rate, even from a low-resolution camera.
In RGB24 format, one byte is used for each of the red, green, and blue com-
ponents of each pixel. An image of 640 × 480 pixels will require 640 * 480 * 3
bytes per frame. There will be 30 frames per second (25 in many countries
outside the United States), so the data rate is 27,648,000 bytes per second.
Even at a resolution of 320 × 240, the fl ow is nearly 7 megabytes per second.

It is clear that an essential feature of analysis must be data reduction.

ANALYZING AN IMAGE 225

12.3.1 Data Reduction

For many purposes, each pixel can be reduced to a binary decision, light or
dark. A vision guidance project studied small green seedlings on an earthy
background, and a decision “soil” or “plant” gave all the image data needed.
Immediately the data size is reduced by a factor of 24.

Perhaps the largest reduction can be made by looking at just a subset of
the image bits. One project concerned the visual counting of macadamia nuts.
They were picked up between the blue-colored bristles of a plastic brush
roller. The routine needs only to look at every fi fth pixel or so to avoid missing
a nut. When a nonblue pixel is found, a more intensive search can be made
to locate the outline of the nut with some accuracy. Thus the initial scan only
looks at 1 pixel in 25 of the image.

The ultimate data reduction in such projects is to the “answer,” maybe
statements such as “steer left a little” or “there were 2435 nuts.”

It is important to discriminate between processing methods that extract
“facts” from the image and processing that will simply change the appear-
ance—or processing that will change the appearance as little as possible, for
that matter. Image compression such as is used for digital television is a
subject in itself.

A black-and-white image is likely to contain lumps of black pixels
and lumps of white ones, rather than a random scattering. An early
method of data compression was run-length encoding, where each scanline is
coded in a form that might represent “23 black, 15 white, 75 black . . . ,” and
so on.

But the clumping will take place in two dimensions, not just along scan-
lines, so methods such as LZW allow the data to be reduced in size with no
loss of actual information.

The compression of color images presents a different problem. This time,
image data must inevitably be lost, since only in cartoons will many adjacent
pixels be identical in color, but the aim is to keep the “essence” of the appear-
ance of the image.

One compression method is to use a “palette” of 256 colors and approxi-
mate each pixel to one of these. The approximation can be brought a little
closer by the use of “dither,” the alternation of two colors to get that appears
to the eye as something in between.

More effective for photographs is the JPEG technique. The picture data
defi nes the parameters of two-dimensional functions, bounded by coarse
rectangular tiles of the image. These fi t together to give a smooth high-resolu-
tion picture, but detail can be lost and fl at areas such as sky can carry “tide
marks” of color quantization. The degrees of compression and smoothing can
be set as a parameter when compressing the image.

Sequences of movie images offer even further possibilities. Many “codecs”
(compression–decompression fi lters) save only the differences between frames
to the data stream, so that the background does not need to be repeated.

226 MACHINE VISION

Every few frames, maybe 15 or so, the entire image is saved so that it is neces-
sary to go back only to this “key frame” to reconstruct a particular image,
rather than to the beginning of the fi lm.

To a large extent, image compression is irrelevant as far as our purposes
are concerned. Allowing for the problems of data size, we wish to work on
an image with as much of the original detail left intact as possible.

Now we have captured a frame of image data, either in an array that we
can access using subscripts in a high-level language or in a block of memory
into which we construct a pointer to fi nd the pixel we seek.

12.3.2 Smoothing a Binary Image

Whether the image is binary or grayscale, we will want to perform some sort
of integration or differentiation on it to achieve a fi lter (in the control sense).
The fi rst operation that we will consider is smoothing, to remove spots and
ragged edges.

The simplest way to do this is to consider each square block of 9 pixels.
Take their average, and give that new value to the center pixel. If the image
is binary, “taking the average” means that if 5 or more of the 9 pixels are
light, the new pixel is light, otherwise it is dark.

You can see this in action on the Web at www.essmech.com/12/3/2.htm.
Examples have been written in JavaScript, which has a syntax closely resem-
bling that of C. More details of the implementation are given in Chapter 13.

The code that performs the smoothing is

function smooth() {
 var m, i, j, k, l;
 for(i = 1;i<cols;i++){ //for each point
 for(j = 1;j<rows;j++) { //except the edges
 m = 0; //clear the total
 for (k = i - 1;k<=i + 1;k++) {
 for (l = j - 1;l<= j + 1;l++) {
 m = m + pic1 [k][l]; //add 9 values in 3x3

//block
 }
 }
 if (m > 4) { //If majority are white
 pic2 [i][j] = 1; //make pixel of pic2

//light
 }else{
 pic2 [i][j] = 0; //otherwise make it

//dark
 };
 }
 }
}

ANALYZING AN IMAGE 227

In this example, the smoothing is applied several times and the image settles
down to a shape without ragged edges.

When used on a grayscale image, this averaging technique has the effect
of blurring the image. We will see another method in action later.

A disadvantage is that some special measures would be needed to pro-
cess the outside boundaries of the image, since they have a row of neighbors
missing.

12.3.3 Finding Edges

To fi nd the outline of an object in the image, we must think in terms of dif-
ferentiating it.

In the world of discrete samples, or pixels, differentiating becomes “dif-
ferencing,” taking the difference between a value and its neighbor. We can
easily edit the code of the last example to be

function diffx() {
 var i, j, k, l;
 for(i = 1;i<cols;i++){ //for each point
 for(j = 1;j<rows;j++) { //except the edges
 if ((pic[i+1][j] - pic[i][j]) > 0) {
 //If the pixel to the right is brighter
 pic2 [i][j] = 1; //make pixel of pic2 light
 }else{
 pic2 [i][j] = 0; //otherwise make it dark
 };
 }
 }
}

So, what does it do? We fi nd a sort of negative shadow, where the lefthand
edge is outlined in bright pixels while the rest are dark. This is certainly dif-
ferentiating the image, but not in a way that is generally useful.

To try it for yourself, open the previous “smoothing” example and copy
and paste this new function into the code window below the “smooth” func-
tion. Then add

diffx();
pic1=pic2;
showpic1();

below the rest of the code and it is ready to run.
We could embroider the code to replace the “greater than” sign “>” with

a “not equal” sign “<>” to get shadows on both left and right edges, but we
would also have to or a test on the vertical difference if we wish to have an
outline all round the object. But there is a more methodical way to do it.

228 MACHINE VISION

We can think in terms of convolution, a process where one array of values
is applied to fi lter another by multiplying and adding corresponding elements,
planting a result, and then moving the pointer of the fi rst array to the next
pixel.

In this differencing case, the array of the fi lter is just [−1,1], or perhaps we
should write it as [0,−1,1] since it is then clear that the “result” must be written
to the central pixel position.

So, if we start with a row of pixels

0 0 0 0 1 0 1 1 1 1 1 0 0 0

and apply the fi lter

[0 -1 1]

we will fi rst get the calculation

0 0 0 1 -1 1 0 0 0 0 -1 0 0

which results in a new string of pixels

0 0 0 1 0 1 0 0 0 0 0 0 0

when we set anything less than 1 to be a zero pixel.
Each row of pixels will be processed independently to give the full image.
If we want to detect both sides of the object, however, we should instead

be looking at the second derivative, or the second difference. Now, convolving
the fi lter with itself, we get

[-1 2 -1]

meaning “twice this pixel, minus the left and right neighbors.”
When we apply it to

0 0 0 0 1 0 1 1 1 1 1 0 0 0

we get numbers

0 0 0 -1 2 -2 1 0 0 0 1 -1 0 0

which become pixels

0 0 0 0 1 0 1 0 0 0 1 0 0 0

We have succeeded in fi nding the edges, plus the isolated pixel “speckle.” The
new image is not shifted to the right or left, as it would be if using the previ-
ous fi lter.

ANALYZING AN IMAGE 229

So, can this convolution method help us to process the image in two
dimensions?

12.3.4 Convolution and Array Filters

Consider the fi lter

 0 -1 0
-1 4 -1
 0 -1 0

This is the sum of the previous fi lter, padded out with a row of zeros top and
bottom, added to its vertical counterpart. We can look at it pragmatically to
deduce that the new pixel will be light only if the present pixel is light and
not surrounded top and bottom, left and right by other bright pixels.

We must defi ne our coeffi cients to be an array

fi lt=new Array(3);
fi lt[0]=new Array(0,-1, 0);
fi lt[1]=new Array(-1, 4,-1);
fi lt[2]=new Array(0,-1,-0);

and these coeffi cients can then be used in the routine

function fi lter() {
var m, i, j, k, l
 for(i = 1;i<cols;i++){ //for each point
 for(j = 1;j<rows;j++) { //except edge
 m = 0;
 for (k = 0;k<=2;k++) {
 for (l = 0;l<= 2;l++) {
 m = m + pic1 [i+k-1][j+l-1]*fi lt[k][l];
 }
 }
 if (m >=1) { //If total is positive
 pic2 [i][j] = 1; //set pixel of pic2 to red
 }else{
 pic2 [i][j] = 0; //set pixel of pic2 to black
 };
 Label(m,i,j);
 }
 }
}

See it in action at www.essmech.com/12/3/4.htm.

230 MACHINE VISION

A host of fi lters are based on the use of such a 3 × 3 array of coeffi cients.
We could have used this technique for the fi rst smoothing example by defi ning
the array to be

0.2 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2

Only if 5 pixels in the array of 9 are bright will the total reach the value that
we have set for the threshold. We could indeed try other values than 0.2. The
value 0.25 would let us set the criterion at 4 bright pixels.

But returning to edge fi nders, our criterion could be that a bright pixel
would survive as an edge unless surrounded completely by other bright pixels.
The fi lter would be

-1 -1 -1
-1 8 -1
-1 -1 -1

Perhaps we want the edge to be marked in the “sea” that surrounds the
“island”:

1 1 1
1 -8 1
1 1 1

The choices are endless. You can try out any you think of on the Web.
I must repeat that these operations will change the appearance of an image,

reducing it to spots with the appearance of lines at the edges of any “blobs,”
but a lot more has to be done before a line can considered as a “path” around
the object.

12.3.5 Smoothing Grayscale Images

To see an array fi lter in action on a grayscale image, see the fi rst Web example
at www.essmech.com/12/3/5.htm.

The fi lter in this case is

 1, -2, 1
-2, 4, -2
 1, -2, 1

giving the result that would be obtained if fi rst the horizontal “second
difference” operator [−1, 2, −1] were applied, followed by its vertical
counterpart.

ANALYZING AN IMAGE 231

It is clear that by taking a second difference, it has eliminated the “graded”
background that would give problems if a single threshold had to be set.

In control terms, the convolution that we are performing is termed a fi nite
impulse response fi lter. The distance of the infl uence of any sample is limited,
in this case to its neighbor. Broader fi lters could be set up, 5 × 5 or maybe
7 × 7, but the computational effort increases with the square of their size.
Alternatively smaller fi lters could be used repetitively, so that the infl uence
will “spread out” one pixel at a time.

There is another approach. In control theory, we saw that a lowpass fi lter
(see, e.g., Fig. 12.1) would smooth a time series. Such a fi lter might take the
form

for i = 0 to n
 xslow = xslow + (x(i) -xslow) / k
 x(i) = xslow
next i

where k determines the time constant.
But this “smears” the waveform to the right and would similarly smear an

image. In real time, we can process a time series in only one direction, but
here we have a captive image. We can follow up the left-to-right smoothing
with another smoothing right-to-left that will exactly cancel out the smearing,
while leaving the blurring in place. This approach, using a two-way fi lter, is
shown in Figure 12.2.

Step input

Low pass

Figure 12.1 Lowpass fi lter applied to a step.

Step input

Two-way filter

Figure 12.2 Two-way fi lter applied to a step.

232 MACHINE VISION

Having blurred the image horizontally, we get the fi nal effect by applying
a similar vertical fi lter. See the result in the second Web example at
www.essmech.com/12/3/5.htm.

12.3.6 Sharpening a Grayscale Image

In control theory, we used a highpass fi lter to approximate to differentiating
a signal. We saw that we could construct such a fi lter by fi rst making a lowpass
fi lter, then subtracting the smoothed version from the original signal. The
same principle applies to sharpening an image.

We have just seen how to use an infi nite impulse response fi lter, our simple
lowpass fi lter, for smoothing an image. We apply it left-to-right, right-to-left,
top-to-bottom, and fi nally bottom-to-top.

When we subtract the smoothed version from the original image, we have
a sharpened image in which the edges are enhanced. If this difference image
requires more contrast, we can multiply the values to enhance it.

See the images shown in Figure 12.3 in action on the Web page at
www.essmech.com/12/3/6.htm.

12.3.7 Edge Tracing

In the mid-1980s, we had attached a primitive stepper motor robot to a com-
puter. A lens and a simple photocell were then added to the gripper of the
robot to give a single point of vision. The robot could be moved to scan the
photocell over the view, thus building up an image. It was somewhat slow and
unwieldy, but it made a student project.

Could the image be scanned some swifter way? If the vision point could
be driven to follow an edge in the scene, we might be able to trace out the
boundaries of objects, inspecting a very few pixels within the whole scene.
Today the image is captured in a fl ash, but analyzing the image in a logical
and economic way still has the same virtues of speed.

First, the spot must be driven across the scene to detect the fi rst change in
brightness. When it has found an edge, it can start to track it. A comparison
of brightness against a threshold gives a binary decision for each spot, black
or white.

The spot has eight notional directions of travel, defi ned by eight points of
the compass. Suppose that the present direction is west and the present spot
is white. The spot moves one step north. If the new spot is black, the edge has
been crossed, so the spot moves back southwest. If the new spot is white again,
the boundary has been followed one step west. The cycle can repeat for as
long as the boundary leads west and the spot continues to “stitch” along it.

Suppose, however, then another black spot is found on the “back step”.
Then the boundary might have curved to the south. The direction of travel is
turned 45° anticlockwise and another backward step is taken, now due south.

ANALYZING AN IMAGE 233

If there is a change to white, the stitching can continue, now in the new direc-
tion; otherwise yet another anticlockwise turn and backward step are taken.
Eventually the movement must fi nd an edge again, even if it has to complete
the semicircle back to a previous point.

Similarly, if a forward step fails to fi nd a change, the turn is clockwise and
another step is taken.

Each time a change is detected, the coordinates are noted, giving a sequence
of points that track in order around the boundary. In this case, the path will
track anticlockwise around a white object, or clockwise around a black one.

An image created by edge stitching is shown in Figure 12.4.
The outline of the algorithm in QBasic is as follows:

Figure 12.3 Screen grab of edge enhancement.

234 MACHINE VISION

DO ‘This is the search algorithm
 IF here = white THEN ‘if fi rst point is white
 here = look(d) ‘look at a second point in

direction d
 IF here = white THEN ‘if it’s the same, white, then
 turn 1 ‘turn clockwise for next move
 ELSE ‘otherwise you’ve crossed a

‘threshold
 notepoint ‘so mark it
 END IF
 ELSE ‘if fi rst point was black,
 here = look(d - 3) ‘look at a second point in

‘direction d-3
 IF here = black THEN ‘if it’s the same, black, then
 turn -1 ‘turn anticlockwise
 ELSE ‘otherwise you’ve crossed a

‘threshold
 notepoint ‘so mark it
 END IF
 END IF
LOOP UNTIL beenthere > 0 ‘keep going until you hit an

‘old marked point

From this fundamental principle, a number of additions are needed to make
the routine work.

If the starting point is not near an edge, the routine will just go round in
small circles forever. The fi rst modifi cation is to count the number of steps

Figure 12.4 Illustration of edge stitching.

ANALYZING AN IMAGE 235

since the last boundary crossing. If this exceeds four, the direction is not
allowed to change until after two steps, then three, and so on. The length of
a “straight” increases by one every eight steps. Now, after the fi rst semicircle,
the search expands in a spiral.

The second modifi cation enables the program to adapt the threshold to
fi nd subtle shades. Two variables hold the lightest and the darkest values
found so far. The threshold level is set midway between these levels.

To adapt to local changes, the “lightest” value is reduced by a small amount
at each step while the “darkest” is increased. They will ramp until they hit
the values being found locally, while variations in the level will keep them
apart. If the “gap” becomes too small, boundary crossings are ignored, so that
the search spirals out to fi nd a more prominent edge. If the search arrives at
a point already tagged, then it is ended.

That describes the details of the technique, but what does it achieve?
The boundary is revealed as an ordered sequence of points, forming a

Freeman chain.

12.3.8 Analyzing Boundaries

The sequence of points found by the “stitching” method can equally be
regarded as a chain of vectors joining one point to the next. Each vector has
a length and a direction. If the vectors are added in pairs or more, the
“ragged” nature of an oblique edge will be smoothed.

We can take the sum of the lengths of the vectors from the starting point
to obtain the distance s moved around the perimeter, and against this we can
plot the angle y of the vector, the direction of the perimeter at that point, to
get an s–y (s-psi) curve.

With this curve the shape data can be reduced to a few hundred bytes of
data, say, 256 or 512, representing the tangent directions at equal intervals
around the perimeter. By comparing this shape data against templates of the
same length, we can recognize the shape.

Object recognition might at fi rst seem a daunting task. Even if the size of
the object is known, it can be rotated to any angle and be located anywhere
in the picture. If you are searching in 0.5 mbyte of data by a correlation
method, the number of computing operations is huge. Given an s–y plot, most
of the task is already done.

From start to fi nish the angle will change by 2π. This plot will be the same,
wherever the object is in the picture. However, the object could be lying at a
different angle. In this case the plot will still be the same, if regarded as a
cyclic function, but will have a constant added to the angle value. If the object
is “fl ipped,” the function will be reversed.

In each case, the task of matching the unknown object against a template
is a simple case of examining a few hundred data points. We still have to
consider the match as a correlation, shifting the starting point around the
template, unless we can fi nd a strategy for determining a starting point. Even
so, the computing load is relatively modest.

236 MACHINE VISION

Since y is plotted against the proportion of the distance traveled around
the perimeter, size does not matter. Objects of the same shape will have the
same data, however big they are.

An example on the Website shows a shape being traced. The s–y curve is
then generated, smoothed, and reduced to a fi xed length. At each stage, the
shape is reconstructed so that it can be seen how far the smoothing might
distort the shape.

See http://www.EssMech.com/12/3/8.htm and Figure 12.5.
Of course, clues other than shape can be used for a comparison, once the

binary decision has been made to discriminate between the pixels of the
object and the background:

• The area of the object can be found by counting pixels.
• By searching for boundaries within the object, any “holes” can be

counted.
• By testing the “width” of the object as it is rotated, the ratio between

maximum and minimum can be found.

This is not the only format for shape data. By taking moments, the center of
gravity can be found. Now, by tracing out along radii from the center of
gravity, radius length can be found as a function of radius angle. However, a
curve may have a reentrant “hook” so that a radius can cut it in more than
one place. The plot of radius versus angle is then no longer single-valued and
is therefore diffi cult to list as a computer function.

This is just a glimpse of the vast range of possibilities that are opening up
in vision sensing. Any more would go beyond the essentials.

Figure 12.5 Boundary tracing and s–y curve.

237

13
Case Studies

13.1 ROBOCOW—A MOBILE ROBOT FOR TRAINING HORSES

The National Centre for Engineering in Agriculture received a startling
project proposal concerning a “robot cow” that could fool a horse. As dis-
cussions progressed, it rapidly became clear that the design requirements
would be extremely hard to meet. The purpose was the training of horses for
cutting contests, where horse and rider must control the movement of a young
cow. The business proposal was made by an acknowledged “cutting
champion.”

In heading off a young cow that is trying to rejoin the herd, the partnership
of horse and rider depends entirely on the ability of the horse to recognize
and anticipate the intentions of the cow. In training the horse, it has been
usual to use a “borrowed” calf—or two, or three or more.

As fast as the horse learns, so the cow also learns and very soon refuses
to cooperate. So, to train one horse takes the use of many cows and consider-
able expense. A robot cow, on the other hand, would be consistent and pre-
dictable by the rider if not by the horse.

Robocow, as it was quickly named, must perform a memorized sequence
of actions, so that with no more than a two-button controller the horse rider
can select, start, pause, or resume the cow’s performance. In addition, it is
important that when completing a sequence designed to bring it to the starting

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

238 CASE STUDIES

point, the cow can repeat the sequence several times before large positional
errors are built up.

Some of the sequences can be preprogrammed during manufacture, but
there is also the need to provide the ability to memorize special individualized
routines on the farm. For this, a standard radio-control joystick system is
used.

At the outset, the mechanical performance requirements were challenging,
to say the least. The cow must reach a speed of 20 km/h with an acceleration
of several meters per second per second. The terrain was specifi ed as “beaten
earth.”

13.1.1 Overview

The selected geometry was a steered tricycle with driven front wheel—the
same system as the fairground “dodgem.” The steering can turn through
half a circle, so that the cow can spin about the center of its rear axle. It can
actually accelerate faster in reverse, when the weight is thrown onto the driven
wheel.

Navigation of Robocow (Fig. 13.1) depends on odometry. The undriven
rear wheels are equipped with Hall effect sensors that enable their angles
to be monitored at all times. Heading is deduced from the difference
between the wheel rotations, and the coordinates are estimated by integrating
forward motion multiplied respectively by the sine and cosine of the
heading.

Steering control uses a highly nonlinear algorithm that drives the system
to a new setting in a fraction of a second, very similar to the position control
discussed in Chapter 3. The overall result is a lively beast where performance
is limited more by skidding on the dirt surface than by any limitations in the
drives or controls.

13.1.2 Mechanical Design Considerations

Since the drive is applied through the front wheel, the two rear wheels are
undriven and have no reason to slip in the direction of progress. They can
therefore be used for reliable odometry, provided they do not leave the
ground.

A single 120 W motor did not give the lively action the clients were seeking.
With two such motors mounted on the front-wheel assembly, symmetrically
placed fore and aft of the wheel, there was more than enough drive to skid
the front wheel.

The steering uses another very substantial motor of 60 W rating, so that it
can be driven from one extreme to settle at the other in well under one
second.

Two 12 V lead acid batteries are mounted symmetrically near the rear
wheels. There is a tradeoff between wishing to keep the center of gravity over
the driven wheel and the need to keep it aft to lessen the risk of rolling.

The diameter of the front wheel is 310 mm and of the rear wheels is
300 mm. The wheelbase is 585 mm fore and aft, while the rear wheels are
760 mm apart.

Rear Axle

Odometry Wheel Odometry Wheel

Drive Motors

Drive Belt

Batteries

Controller

Steering Gears
and Motor

Mechanism
(Detail not shown)

Chassis
Backbone

Steering Gears
and Motor

Drive Motors

Odometry Wheels

Drive Belt

Controller and
Radio Receivers

Batteries

Figure 13.1 Two diagrams of Robocow.

ROBOCOW—A MOBILE ROBOT FOR TRAINING HORSES 239

240 CASE STUDIES

The body of the fi rst prototype was formed by stretching a cloth “cow suit”
over a light tubular framework. A much more realistic body has now been
molded in polystyrene foam.

13.1.3 Operation and Control Design

The rider must be able to operate Robocow with a simple pushbutton
controller with one-handed operation. A two-button motor-vehicle remote-
locking device was used. With long and short presses, acknowledged
by beeps from the cow, this gave all the command power that was
needed.

For programming the “dances,” a radio-control joystick was used, with fore
and aft movement setting the speed and side-to-side motion commanding the
steering. Extra controls such as those used for selecting “record” mode were
mounted on the cow’s rump.

By now we are starting to build up a substantial list of tasks for the micro-
controller to perform. One approach might be to look for a sophisticated
multitasking operating system, but the straightforward approach is much
simpler. An HC11 was chosen with ample capability for the task itself, but it
is not a device on which you would want to heap “system software.” The tasks
are

• Measure the angles turned by the rear wheels and calculate odometry.
• Measure the steering angle and its tacho to close the steering loop.
• Read the joystick signals.
• Read the two-button radio signals and obey them.
• Read and debounce the control switches on the cow’s rump.
• Check progress and step through the stored “dance,” controlling the

speed.

The dance is stored as a sequence of segments. Each defi nes a steering angle
and a target speed. By limiting the precision to 14 steps of speed and steering,
represented by values in the range −7 to +7, the pair of values can be held in
a single byte. For each segment there is also stored a termination condition
in a second byte.

If the segment is a turning one, the termination condition defi nes the
heading angle at which the segment ends. If the steering is required to be
straight in the segment, its termination condition defi nes the aggregate dis-
tance to be covered until the next segment starts. Segments are short enough
that using a single byte will identify the least-signifi cant byte of the distance
without ambiguity. If the speed command is zero, the condition determines
the time that must elapse before continuing.

The termination conditions are absolute to avoid accumulating errors; that
is, the distance termination is not simply the length of the segment but the

total distance covered since starting. Similarly, the heading is absolute, mea-
sured from the start condition in terms of the difference between left and
right wheel rotations.

When required to run straight, any error in steering calibration could
cause the path to be a large circle. This is avoided by applying heading
error feedback to the steering, nudging it by an angle limited to a few
degrees. It keeps the machine straight without being perceptible in its
behavior.

13.1.4 Sensors and Control Loops

At the heart of both odometry and steering sensors is the simple Hall effect
angle-sensing device mentioned in Chapter 2. Two UGN3504 analog mag-
netic sensors are mounted with their sense axes perpendicular to the axis
of rotation and perpendicular to each other. In the case of the wheels, they
are mounted within the rod that forms the wheel bearing. A magnet is
mounted on the wheel with its axis radial, normal to the rotation axis (see
Fig. 13.2).

The sensors therefore give signals representing the sine and cosine of the
wheel rotation angle. In fact, two such magnets are used, mounted on either
side of the axis, so that second-harmonic distortion is minimized if the sensors
are not exactly axial.

The sensor signals are encoded directly by the 8-bit ADC channels of the
68HC11 microcomputer that controls the cow. A simple and novel routine
extracts the angle from these two signals.

The routine is based on the approximation

Crosssed Hall effect
sensors in axle

Magnets in hub

N
S

N
S

Figure 13.2 Hall effect sensor, shown in a wheel.

ROBOCOW—A MOBILE ROBOT FOR TRAINING HORSES 241

242 CASE STUDIES

Angle =
. sin cos
. sin cos

3 7
2 7

1
4

−()
+ +

+

p

which is accurate to a fraction of a degree.
In the software, the angle is represented by a single byte as “binary degrees”

or “begs,” where 256 begs make one complete circle. The increments are thus
slightly less than 1.5°.

The routine for calculating the angle is very simple. During an initial setup,
the sensors have been calibrated to fi nd the mean and amplitude of their
variation, values now held in nonvolatile memory.

First the appropriate datum value is subtracted from each sensor signal
and the sign is noted. This will determine the quadrant of the fi nal result.
Now the positive values SINA and COSA are calculated by negating these
values, if necessary, and multiplying them by the corresponding calibration
factor to normalize them to a range of 0 to 127.

The value π/4 corresponds to 32 begs, so the fi rst-quadrant angle is now
given by

237*(SINA-COSA)/(346+SINA+COSA)/2 + 32

since 2.7 * 128 = 346 and 64 * 3.7 = 237
The wheel angle is “extended” into a multibyte value that is long enough

to hold the total number of wheel revolutions for a performance. If the new
“local” value is within a count of 64 of the previous value, it is clear whether
a carry or a borrow should be propagated into the higher bytes. If the change
is greater than a quarter of a revolution, an error is indicated.

The alternative to this analog technique would be to use a bidirectional
counter to count pulses from an encoder disk. In that case, unless a hardware
counter is used, the service routine would have to interrogate the transducer
more than 256 times per revolution of the wheel. With the analog sensor, four
or more interrogations per revolution will be suffi cient.

In the wheel angle routine, a highpass routine with which you will now be
familiar gives an estimate of the speed of each wheel.

The steering sensor has an identical pair of “crossed Hall effect” sensors
and uses the same subroutine to calculate the angle. The crispness of the
steering is made possible by the addition of an analog tacho. This signal is
encoded by an additional ADC channel, bringing the total of channels to
encode to seven.

13.1.5 Software Structure and Timing

The software framework was designed by Jason Stone, of the NCEA.
After initialization, the software enters an “idle loop” waiting for com-

mands from the two-button switch or the rump switches. Whether recording
or playing a dance, the routine also follows a simple loop. All the control is
applied within interrupt routines.

VISION GUIDANCE FOR TRACTORS 243

A timer interrupt initiates a control cycle every 4 ms, which starts by
reading the sensors and updating the odometry. The steering is serviced and
a counter selects every tenth interrupt, so that speed control and the keypad
routines are serviced every 40 ms.

Every 4 ms the steering angle is measured and a required steering velocity
is computed. This velocity demand is limited in magnitude. The measured
steering velocity is added and the result controls the bang-bang (with dead-
zone) drive to the motor. The deadband is only one “beg” when the cow is
moving or when the demanded angle is nonzero, but is increased when at rest
to conserve battery life.

The other two important sensor channels are the joystick controls. A con-
ventional model aircraft radio system is used, in which the commanded values
are represented by a variable pulsewidth. These pulses are received at times
that the software cannot “expect.” Their widths must therefore be measured
in another interrupt routine, where they are “parked” for processing every
40 ms.

Speed control is applied only every 40 ms, unless there has been a change
in command. The velocity is, however, computed every 4 ms.

The lower 2 bytes of the multiturn wheel angle are used as an input to a
numerical lowpass fi lter, with time constant 64 ms, and the difference between
actual and fi ltered values will represent an actual velocity. The quantization
level of this velocity is one sixteenth m/s. It is divided by 8 to give a quantized
speed zone in the range ±7, where each unit is 0.5 m/s and the top controlled
speed is 3 m/s. If the demanded speed is +7 or −7, continuous full power is
applied to the motors.

If the measured speed is less than the demanded speed, 12 V of acceleration
is applied to the motors. If the speed codes are equal, or if the measured speed
exceeds demand by one unit, the motors freewheel. If the speed exceeds
demand by two or more counts, braking drive is applied. Speed zero is deemed
to belong to the reverse direction set, so that when moving forward and com-
manded to stop, braking will continue until the zero-speed zone is reached.

13.1.6 In Conclusion

There is some video of Robocow in action on the Web at www.essmech.
com/13/1/6. An early prototype was seen on UK television in a Tomorrow’s
World program, while another prototype was placed on display in the
Powerhouse Museum in Sydney.

13.2 VISION GUIDANCE FOR TRACTORS

Some years ago, a vision guidance system was developed at the University
of Southern Queensland to the stage where commercial exploitation was
attempted. Six prototypes were tested by farmers in Australia, and two more

244 CASE STUDIES

were put on trial in the United States. Over the years of the project, there
were several changes of imaging technology but the fundamental principles
remained consistent. New funding has seen a rebirth of the project, now to
be integrated with GPS guidance.

13.2.1 Introduction

The system derives its guidance signal from a videocamera image of the
rows of a crop ahead of it, such as cotton. The patented strategy makes it
relatively insensitive to additional visual “noise” from weeds, while by
tracking several rows at a time it can tolerate the fading out of one or more
rows in a barren patch of the fi eld. The image of each row is tested for
“quality.”

Experimental results showed that the system was capable of maintaining
an accuracy of 2 cm. Farmer responses from the extensive fi eld trials were full
of enthusiasm—but they still did not purchase the system in suffi cient quanti-
ties to keep it alive.

The need for automatic guidance of farm vehicles had been recognized for
a considerable time. Many guidance methods had been considered, ranging
from buried leader cables to beacons, surveying instruments, or satellite
navigation. GPS was in its infancy at the time of the original project. All had
their drawbacks. The most appealing method was to follow human practice
and take guidance from the crop itself, steering the vehicle by means of the
view of the rows ahead.

Consistent accuracy of row following allows cultivator blades to be set
much closer to the plants, greatly increasing the effi ciency of weed control
and circumventing the need for additional spraying. Meanwhile, the driver
can give greater attention to the cultivation operation and the state of the
crop.

But enough of the sales talk. How does it work?

13.2.2 Design Tasks

The design presented a succession of problems:

 1. Acquiring an image
 2. Determining what pixels represented “plant” and which were soil
 3. Separating each row from the others
 4. Fitting a line to the center of each row
 5. Analyzing slopes and intersections to fi nd a vanishing point
 6. Deducing turning of the tractor by using movement of the vanishing

point

VISION GUIDANCE FOR TRACTORS 245

 7. Deducing position error of the tractor from the changes in slopes of
the fi tted lines

 8. Constructing a steering signal

And that is just the vision part of the problem. Then we had the tasks of

 9. Adding hydraulic valves to actuate the steering
10. Measuring the steering angle for feedback
11. Closing the steering loop
12. Designing the overall feedback loop that applies the vision-based

demand

This last stage is far from trivial. For safety, the steering loop had a slew rate
limiter. This was in the form of a simple oil-fl ow restrictor. In the event of a
malfunction the tractor steering could not suddenly slew and cause the tractor
to roll over. But the introduction of this nonlinearity brings some severe
control problems.

A simulation at www.essmech.com/13/2/2.htm shows that while a small
disturbance might be corrected quickly and easily, a larger disturbance can
send the same system into oscillation. As we will see later, the control must
be designed with nonlinearity in mind.

13.2.3 Image Acquisition

The early work was based on vision systems with very limited capabilities.
Far from hampering the project, these limitations almost certainly contrib-
uted to its success. It is my opinion that other researchers were led astray by
an excess of data and that problems were tackled that did not really relate
directly to the fundamental task of steering.

The fi rst of our experiments used a binary “frame grabber” that yielded a
black-and-white image—no gray levels—with a resolution of 768 horizontal
points by 96 rows vertically.

The image transfer was performed by direct memory access (DMA) to be
captured in an array in main memory. Here the software was able to access
it for processing. At some cost in overall speed, part of the image was inter-
mittently copied directly to the display memory so that it could be seen on
the computer screen and the effectiveness of the algorithm could be assessed
by eye. Only a decade before the time of writing computers were much
slower.

A later version used a camera interface developed for the consumer market,
the “Video Blaster”—marketed in numerous revisions. A full-color image
was captured in the onboard memory, and this image could be merged “live”
in a window forming part of the display.

246 CASE STUDIES

The system did have attendant disadvantages, of course. The image memory
was mapped at a high address in extended memory, usually selected to be at
15 Mbytes. (That was high in those days!) Occupying 0.75 Mbyte of address-
ing space, modest computer speeds meant that care had to be taken to select
only a small proportion of the data.

With the availability of color, better discrimination was achieved. A fi eld
with a newly shooting crop may be littered with light-colored detritus that
makes it diffi cult to discern the crop rows if brightness alone is used. The use
of a green fi lter over the lens provides no improvement. With color, however,
it was possible to use the chrominance signal rather than luminance to acquire
an image based on the “greenness” of each point.

Today we have a stream of Webcam data with 3 bytes for each pixel, rep-
resenting red, green, and blue. “Green minus red” is one combination that
will give a signal that depends on color, rather than brightness.

Commonality between the evolving hardware versions has been achieved
by the use of a function, picbit(x,y), which presents the image in a standard
form to the analyzer irrespective of the system from which it is acquired.

13.2.4 Separating Plant from Soil

The level (whether brightness or resolved color component) of the image is
now held as a two-dimensional array of values. The fi rst task is to discriminate
between the crop and the background fi eld, something made harder by clouds
that can change the light levels from moment to moment.

Other researchers had devoted a nine-page paper to this discrimina-
tion problem. They argued that the pixel values could be clumped into
two separate peaks, corresponding to plant and soil. With the “leafi ness” of
plants and the lumpiness of soil, this did not seem to have always been the
case.

We found a much simpler approach to be successful. From the state of the
crop we know roughly the proportion of the ground that is covered. As
we pick pixels to analyze, we keep count of the numbers that are reported
respectively as plant and as soil. If their ratio is higher than the expected
groundcover ratio, we increase the threshold by one step; if it is less, we
decrease the threshold. It is as simple as that.

Within a few frames the row images are seen to “fatten up” to match our
density expectations. If they do not match the view from the cab window, a
tap on a button will change the density parameter until they do. The simplicity
of this level adjustment strategy is a heritage of the original binary frame
grabber, which made a more complicated strategy unreasonable.

13.2.5 Separating the Row Images

We used a simple technique that depends somewhat on a circular argument.
If we know where the rows are, we can defi ne “keyholes” in the image so that

VISION GUIDANCE FOR TRACTORS 247

the pixels of any keyhole will contain only the image of one row, plus some
soil either side of it.

Now our task is reduced to one of fi nding how the keyhole should be moved
to the center of the row within it. Since this involves only calculation, rather
than steering movement of the tractor, the correction can be applied to the
very next frame to track the rows as they appear to move about.

That still leaves the problem of fi nding the rows in the fi rst place. But when
the tractor is driven straight, we know when to fi nd them. When the quality
of fi t is insuffi cient, the windows drift back to the central “straight-ahead”
position. Only when it has a good lock on the rows can the system signal that
controls automatic steering be engaged.

13.2.6 Fitting Lines to the Rows

The condition of the crop changes through the growing cycle. Initially the
plants appear as rows of small dots among other scattered random dots
that are weeds. Later they fuse to form a clear solid line. Before long,
however, the lines have thickened and threaten to block the laneways. Great
tolerance in the vision algorithm is thus required to fulfi ll all the seasonal
requirements.

Figures 13.3a–13.3f are slides from an early presentation, showing how it
was done.

The lines tilt either side of vertical, so it is logical to use the form

x ay b= +

to describe them. The horizontal distance of a point from the line is

x ay b− −

To fi t these to the rows, once again simplicity is the order of the day. It would
be a mistake to attempt to analyze the shape of the row boundaries, especially
in the early stages of growth. Instead, the “plant” pixels can be treated as
points on a graph, through which a straight line is to be fi tted.

The regression method is used to fi t the best straight line to a set of points.
The regression line minimizes a quadratic cost function, the sum of the
weights of the points times the squares of their distances from the line. This
cost function can be thought of as similar to the moment of inertia of the data
points, represented as masses corresponding to pixel values, when spun about
the best-fi t line.

In our case, we are interested in the horizontal distance from the line,
rather than the perpendicular distance, so that the cost function becomes

C m x y x ay b
x y

= () − −()
∈
∑ ,

, keyhole

2

248 CASE STUDIES

Figure 13.3 Slides showing row fi tting.

a b

c d

e f

Newly sprouted plants appear
in relatively neat rows

Several keyholes are updated
to track their regression lines

Steering data can be derived
from lines fitted to the row images

Part of the image
is selected in a “keyhole”

A regression line
is fitted to these points

The moment about this line gives
a measure to guard against errors

(This is actually a double summation, since we must sum over both x and y.)
Now we want to fi nd the values of a and b that will minimize C. At this com-
bination of values, the partial derivatives of C with respect to a and b will be
zero:

∂
∂

= ∂
∂

=C
a

C
b

0 0,

When we differentiate, we are still left with the summation giving two simul-
taneous equations in a and b, involving coeffi cients that are the following
sums:

m x y xm x y ym x y xym xy y m xy, , , , , , and() () () () ()∑ ∑ ∑ ∑ ∑ 2

which in our code we will call

VISION GUIDANCE FOR TRACTORS 249

m, mx, my, mxy, myy

Instead of a and b, we give the results the more descriptive names fi tx and
fi tslope, so that the solution is calculated by

fi tx = (mx * myy - mxy * my) / (m * myy - my * my)

and

fi tslope = (m * mxy - mx * my) / (m * myy - my * my)

The results are delivered to the steering process in the form of the lateral
movement of the vanishing point and the slope of the rows in the picture.
From these we can calculate the lateral displacement at any distance in the
rows ahead.

If we also calculate the value mxx, we can fi nd the actual minimum value
of C. If the fi t is good, the result should be small. If the crop is scattered or
confused with weeds, however, the moment of inertia will be larger. As a test,
the minimized value of C is divided into m times the moment that we would
get if every point were plant, to give a measure of quality. The steering
information is acted on only if quality is suffi ciently high.

Often a row may fade out halfway down the fi eld. For this reason, the
computation is performed not just for one row but for two or for three. (If all
rows are found to be unacceptable, 3 times in succession, then an alarm
sounds and control reverts to manual.) Finally, the mean value of all the
samples in the keyhole is used to adjust the brightness or greenness threshold
for the next frame.

13.2.7 Applying Steering

The main steering tasks were outlined above in items 9–12 in the list in
Section 13.2.2. First we must provide a way of converting the electrical signal
into the mechanical steering action. One approach would be to turn the steer-
ing wheel by means of a motor, but instead we decided to exploit the hydraulic
steering of the Case Magnum tractor that had been lent to us.

Two solenoids that drove a relatively simple valve gave us an action in
which the steering could be controlled to slew to the left or right. Constrictors,
disks with small holes in them, were added to the valve to limit the rate of
slew. If anything went wrong with the electronics or electrics, it was essential
that the action not be too violent. The human driver must be able to counter-
act any such steering action.

Now we needed a measurement of the steering angle, to use as feedback.
For this, the Hall effect sensor was ideal; it is mentioned in Section 2.2.1 and
described in more detail in Section 3.5.2. We can now calculate the angle

250 CASE STUDIES

error and simply set one or other solenoid according to the sign of the error,
leaving a small deadband in between. The rate limit, although essential for
safety, does have a control drawback.

The error signal taken from the vision system is the apparent lateral shift
of the rows partway up the picture. Since it is measured ahead of the vehicle,
this will have a value that is a sum of the vehicle displacement and a term
proportional to heading relative to the row.

In the strategy of a simple linear controller, the demanded steering angle
would be made to be proportional to this error. When the rate of change of
the steering angle is limited, however, an abrupt onset of limit cycle instability
can occur if the initial error exceeds a relatively modest value. This is por-
trayed in the simulation at http://www.essmech.com/13/2/7.htm and shown in
Figure 13.4. The result is to be noted more for its qualitative effect than as
an exact prediction of the error magnitude at which instability will break out.
Here it shows a nearly ideal response from an error of 0.2 m, while an error
of 0.3 m results in disaster.

Of course, the magnitude of the disturbance at which instability occurs
can be increased by reducing the steering gain or by choosing a point fur-
ther ahead from which to take steering data. In either case, however, perfor-
mance is lost and the response time for recovery from a disturbance is
increased.

1

0.5
Position Steering angle

Heading

Initial error = 0.2 m

Position

Steering angle

Heading

Initial error = 0.3 m

0.5

–0.5

–0.5

–1

–1

1

0

0

Figure 13.4 Steering simulation.

Position

Steering angle

Heading

Initial error = 1 m

0.5

–0.5

–1

1

0

Figure 13.5 Steering with limited heading demand.

By rearranging the algorithm in accordance with the topological, nested-
loops approach outlined in Section 10.1, we can calculate a succession of
demands to which we can apply limits. The simulation mentioned above has
been arranged in this form, but the limits have been set too loosely to have
any effect. We see a system that is linear apart from the steering rate limita-
tion. You should experiment with the simulation to try various values of limits
on steering and heading angles.

Imposing a limit on the heading angle, the amount by which the vanishing
point is seen to move, has a dramatic effect as shown in Figure 13.5. Here the
limit is set at 50 pixels and an error of one meter is seen to settle with no
problem.

Figure 13.5 shows the advantage of the row-fi tting approach, identifying
the vanishing point movement, over the simpler strategy of inspecting a single
horizontal line of the image to measure a displacement.

13.3 A SHAPE RECOGNITION EXAMPLE

As part of a doctorate project, Mark Dunn is working on the discrimination
of animal species. Many different animals will approach a watering point in
the Australian outback, including the sheep and cattle for which it is intended,
kangaroos and other native animals, and also feral species that are regarded
as pests.

Feral pigs do untold damage, but feral pork is a commodity that has com-
mercial value. As the animals move past a recognition system, a gate moves
to one of two positions, giving access to one of two enclosures. In one of them,
animals can reach water and after drinking can exit and go on their way. In
the other, feral pigs will gather, drink, and be held for the later attention of
the farmer.

The image analysis can be made much easier if the approach has a blue
background, such as a tarpaulin, but this might deter the animals from

A SHAPE RECOGNITION EXAMPLE 251

252 CASE STUDIES

Figure 13.6 Outlines of sheep and goat.

approaching. An alternative is to look for changes in the background image,
but this can give problems with animals moving in the background. Finding
a workable compromise is in the nature of research. Image comparisons using
sheep and goats are presented in Figures 13.6 and 13.7.

Figure 13.7 Classifi cation with natural background.

A SHAPE RECOGNITION EXAMPLE 253

255

14
The Human Element

14.1 THE USER INTERFACE

It is no use putting a heap of clever features into a device if the user is not
comfortable with it. It is said that only a very few percent of videotape
machines are ever programmed for automatic recording. So, why have the
sales been so successful? Perhaps it is because a rental tape can be inserted
into the slot and will start to play with no further instructions.

DVD players now perform the playing of rental videos—and they do not
need to be rewound. It will be interesting to see how successful the hard-
drive-based videorecorders will be in the long term. It will depend much on
the simplicity of their programming.

14.1.1 What Do the Buttons Do?

Every one of the appliances that we take for granted was once a new product.
There are museum-piece plaques that state; “This room is equipped with
electric light.” It must have been strange to look for the on/off control near
the doorway, rather than a tap on the pipe of a gas lamp. But even today, all
is not so simple. Which way do you move the switch to turn an electric light
on?

An American will immediately say “up,” but in Britain, Australia, and
many other countries, the answer is “down.”

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

256 THE HUMAN ELEMENT

It is obvious that each new product should try to build on the conventions
that are already established in the mind of the user, but that does not always
happen. Which way do you turn a faucet to increase the fl ow of water? Which
way do you turn the knob of a radio to increase the volume?

“Which way” problems persist to this day. On a satellite or digital television
receiver, it is not surprising that pressing the up button on the remote will
increase the channel number. But when the channel list is displayed on the
screen, it is the down button that increases the channel number because of
our habit of writing larger numbers below smaller ones.

A succession of projects long ago on designing early digital controls for
domestic cookers showed that the task of establishing the conventions was at
least as challenging as writing the software. The operation had to be made
totally intuitive. Nobody reads the manual in an appliance showroom, and
that is where the purchasing decision is made.

The design task was actually even more complicated. The contract design
work was being performed for the manufacturers of the electronic control
box. They had to convince the cooker manufacturer that theirs was the con-
troller to install in the new cooker range. The cooker manufacturer had to
convince the stores to stock their brands of cooker and only then did the
public get to see and try the new algorithms.

Let us start with the most fundamental function. How do you adjust the
time? Even today the adjustment buttons of many clocks are designated
“slow” and “fast.” You hold the fast button and watch the minutes and hours
rip by. You release it some tens of minutes before the time you actually want.
Then you press the slow button to let the minutes plod to the target.

But if impatience gets the better of you and the fast button overshoots the
target, you have to navigate another 24 h of adjustment.

So we designated the buttons “up” and “down.” Clearly we needed to
start the adjustment slowly and then speed up. But according to what algo-
rithm? After numerous tests using the factory employees as guinea pigs, we
settled on

(minute)—pause—(minute)(minute)(minute) until the hour is reached,
 then (hour)—pause—(hour)(hour)(hour) . . .

Now we have to consider setting the cooking functions. Suppose that the
current time is noon. You set the “ready time” for one o’clock. Then you enter
“2 h” for the time that the meal should cook. When will the meal be ready?
On some rival controllers, the answer would be “1:00 tomorrow.” This was
known as the “day factor error.” Our simple remedy was patented and earned
royalties and fees for infringement.

Increasing the “cook time” pushed the “ready time” correspondingly into
the future, so that in the example above, a 2-h cooking time would give a
2 p.m. ready time. Selecting and advancing the “ready time” left the “cook
time” unchanged, but wound up the “waiting time” before cooking would

THE USER INTERFACE 257

start. Decreasing the “ready time” reduced the waiting time, but when this
reached zero, any further reduction was blocked.

To set the “ready time” for 1 p.m. tomorrow, it was necessary to wind it
forward by all 23 h, something hard to do by accident.

14.1.2 What Sort of Display?

Long ago, the seven-segment display looked fashionable, whether in shadowy
LCD (liquid crystal display), red LED, or fl ashing vacuum fl uorescent fi gures.
Today a mobile telephone is not complete without a glowing display screen
that can show a full-color photograph. As the prices converge, the simplicity
of numeric displays will continue to lose its advantage.

A seven-segment display (actually eight, with the decimal point) is easy to
drive from the simplest of microprocessors, especially those designed to give
the appropriate output levels. In fact, only one digit is illuminated at any one
time. One “digit driver” line selects the digit, either pulling low a set of cath-
odes of an LED display or pulling high the digit’s anode if the display is
vacuum fl uorescent. Meanwhile eight segment drivers cause the appropriate
segments to be illuminated.

The display is kept refreshed by a background routine that lights each digit
in turn. From this the processor is diverted to attend to any input or control
actions.

Any more sophisticated display is likely to have a controller dedicated to
its needs. The system designer’s task is then to send it the data to display in
the appropriate form over the appropriate bus connection.

Another form of output might not seem to fi t the term “display,” but it is
a valuable user interface. It is sound output. Computers use sound to interact
in a way that is often much more effective than vision. There is the responsive
“click” of an input key, through ring tones and the annoying “ping” that alerts
you to an error, all the way to voiced instructions telling you to “Please hold,
your call is valuable to us.”

A display has three functions. The fi rst is to “close the loop” between user
and computer, so that the user is assured that the programmed function is
exactly what is wanted, whether it is a dialed telephone number or a Sunday
roast. The second is to convey information to the user, such as a caller’s iden-
tity or the speed of a jogger. The third is to look attractive at the point of sale,
something dear to the heart of the client.

14.1.3 What Sort of Input?

The concept of a keyboard is fi rmly embedded in the folklore of computing,
whether the teletypes of the ancient machines or the two or three buttons on
an everyday appliance. A very few devices, such as intelligent pacemakers,
might be designed without user inputs but most have an interface of some
sort or another.

258 THE HUMAN ELEMENT

Pushbuttons present no real problem except that of laying them out in a
way that will make their purpose intuitively obvious to the user. Should they
be placed on the appliance itself, or should they be located on a remote
control “zapper”? How should they be labeled? The international market
decrees that the user must be preeducated with a set of basic concepts. A solid
square means “stop,” a triangle means “play,” and two lines mean “pause.”
But what do you do if your product is truly novel?

The display can come to the aid of keys by displaying a descriptive legend
against them, as in a cashpoint machine. It can even display the legend inside
an image of the keys, if they have been replaced by a touchscreen. Now the
user can be led through a complicated menu—sometimes rather reluctantly—
where the functions of the keys change with each press.

There are other forms of input besides keys. The most familiar device that
can input a nonnumeric quantitative input is the computer mouse. Drag it
across a screen icon, and you can set the playback volume or the screen con-
trast, with no thought of entering numbers. The mouse has some very special
features.

On a PC, as the mouse is moved, the cursor moves with it. When the cursor
is over the feature or value the user wants to select, tapping a key or a touch-
pad will execute the desired action. But there is no absolute relationship
between the cursor and the location of the mouse on the surface of the desk,
or of the fi nger “tickling” the touchpad that substitutes for the mouse on many
laptops. They simply cause the cursor to move. It is the computer that tells
the user what action will be performed if the selection is clicked, so that there
can be no disagreement.

On the other hand, a graphics tablet reads coordinates from the pen that
the user is holding and a calibration error can cause the wrong action to be
performed.

Touchscreens are useful if they have big, chunky legends but have serious
problem with fi ne detail. By defi nition, the user’s fi nger is between the screen
and the eye, so that even if a spot on the screen lights to show the measured
location of the fi nger, it is likely to be hidden!

The joystick is another popular input, both for games and for the setup
movement of numerically controlled machine tools. It has even appeared as
a substitute for a mouse, in the form of a small blob in the middle of the key-
board of some laptop computers.

Sound should not be forgotten as an input medium. Phonebook enquiries
now let a computer try to understand the speech of the user, although in many
cases a human operator must be called to the rescue. With the price of
memory and processor power becoming vanishingly small, voice will soon be
an attractive option for many pocket gadgets.

Vision is also a star that is likely to rise. Already a picture of a keyboard
can be projected onto a fl at surface, where the view of the user’s fi ngers
tapping away is translated into keystrokes. Gestures can be recognized and
who knows, voice input might soon be made more reliable by lip reading.

14.2 IF ALL ELSE FAILS, READ THE INSTRUCTIONS

My wife proudly unpacked her new digital camera. It had come with the
special offer of a 256-Mbyte memory card. With the card installed, she
switched it on and took her fi rst photograph. Nothing happened, except that
the word format appeared on the miniature monitor screen.

In the slim handbook, we found a statement that the memory must be
formatted before use. For details, see the full manual on the enclosed
CD. Eventually, long after the photographic subject had gone, the proce-
dure for formatting the memory was found on page 107 of a 10-Mbyte
PDF fi le.

14.2.1 Designing the Handbook

The handbook is no less a part of the user interface than any software routine,
although if the interface has been designed professionally, it should never
need to be consulted. Problems can arise from too much as too little informa-
tion. The help fi les of a well-known operating system are a good case in
point.

In the early days of computing, help fi les were written by the same enthu-
siasts who had written the software. They might have lacked subtlety and
polish, but they answered the needs of the user to the best of the writer’s
abilities. Then as the industry formed into large corporations, it was clearly
felt that the writing of help fi les was a waste of programmers’ time. It was
easy to imagine an army of stenographers fi lling in boxes of a “What can we
fi nd to tell them about this?” questionnaire with no real thought for the needs
of the user.

There has to be a fi ne balance between telling the user how to go about
changing a setting, why they should want to change it, and what sort of values
they would want to change it to. The tip “By selecting compression in the
dialog box, the value can be changed” does nothing to help the blood
pressure.

Nowadays the help system seems most concerned with setting up the
playing of video clips, changing the screen saver or choosing a pleasant color
scheme. There seems to be little concern with the “real nitty gritty.” Relent-
lessly searching for a technical term will leave the user adrift in an ocean of
Web fi les. Alternatively they have to resort to “developer network” help disks,
consisting of two or more CDs crammed with so many tips and hints that to
fi nd anything is like looking for a needle in a haystack.

But think again, the user has changed. Who is buying the most computers?
For every engineer trying to do something innovative, there are a hundred
would-be authors of the great novel, accountants, secretaries, lawyers, and
lonely hearts searching the Web. The geeks and nerds are a long way down
the pecking order in the consideration of a company that has certainly been
successful in making a dollar or two.

IF ALL ELSE FAILS, READ THE INSTRUCTIONS 259

260 THE HUMAN ELEMENT

The danger with leaving the help fi le or handbook task to the engineer is
that the vital step that will baffl e the user is so instinctive to the engineer that
it is just not considered. Imagine trying to open a door if you have never seen
a doorknob. There is an old joke about a new lumberjack who has spent all
day cutting down a single tree with a chainsaw. Then when the supervisor
starts it for him, he asks, “What’s that noise?”

Nothing can beat the close observation of new users who are handed the
device and asked to put it to work. It is their fi rst questions and their fi rst
reactions that count. If the product is well designed, they will become expert
within minutes or mere seconds and will no longer be suitable guinea pigs for
a second test.

14.3 IT JUST TAKES IMAGINATION

Hardly a day goes by without media tales of wonderful new devices. Refrig-
erators with plasma displays and barcode and tag scanners will order replace-
ment food from the supermarket via the Internet. Electric blankets and
air-conditioning can be turned on by telephone text messages. “Swallowable”
robots take biopsy samples and transmit a video travelog of their journey
through the gut.

Some bright ideas can be a huge success, while many others vanish without
trace. To some extent marketing may be the reason, but eventually it all comes
down to the human element. With the power of embedded computers, if you
can imagine it, you can probably build it. But can you sell it?

There are evolutionary products where technology nudges along the answer
to the user’s need, step by step. “Personal music” once took the form of a
“ghettoblaster” balanced bulkily on a shoulder. Then the “Walkman” brought
relief to us all, reducing the blast of sound to a merely irritating “Tsk tikatika
tsk tika tsk” from the headset of a neighbor in the subway. Tape was
supplanted by the compact disk, which in its turn has fought a losing battle
with semiconductor memory and MP3 data compression, in the form of the
“iPod.”

The incredible shrinking memory chip is taking over portable storage
applications everywhere. In “thumb drives” it has made the fl oppy disk history
and in the digital camera it has sent photographic fi lm the way of the
phonograph.

Sometimes a brand new “need” is discovered, such as the mobile tele-
phone. Technology has lifted the capabilities and reduced the price to make
it universally available, but huge money is being made from spinoff markets.
However, did teenagers communicate before text messaging? How much is
being spent on downloading ring tones and games? Yet other attempts at
“technology push” such as Internet access from a mobile phone seem to have
met with an uphill battle.

So, when you start to work on your “better mousetrap,” perhaps with
machine vision identifi cation of the mouse, MEMS sensors and actuators to
close the trap, plus a wireless message to a cellphone to tell you to collect the
trophy, fi rst consider the human aspects. How will you convince me that I
should buy it? How will I learn to set it? Where in the handbook does it tell
me what to use for bait?

... and fi nally

The last sentence had been typed, the last fi gure drawn, but the task was far
from fi nished. The text has been subject to the scrupulous attentions of a
meticulous copy editor and must be marked up for the fi nal edit.

Squeezing the text onto a narrower printed page has meant that many lines
of computer code have “word-wrapped”. I hope that I have caught them all,
but if your computer grumbles about code that you have typed in from
the text, the fragments of “left over” lines caused by word-wrap may well
be the problem. You should be able to download an undamaged version from
the book’s web page at http://www.EssMech.com.

If you fi nd that any of the promised material is missing from the website,
please drop me an email at john@essmech.com—put “Essentials of Mecha-
tronics” in the subject line so that the spam fi lter does not trap it! I will make
room on the website for interesting questions and suggestions, too.

I hope that this book has convinced you of one important fact. Mechatron-
ics can be fun.

IT JUST TAKES IMAGINATION 261

263

Index

ADC (analog-to-digital converter), 33,
44

amplifi er
buffer, 102
differential, 103
non-inverting, 102
summing, 100
virtual earth, 99

angle from sensors, 241
assembly code, 25, 45, 93, 207, 208,

218
autopilot, 1, 6, 162, 186, 191

Ball and beam, 56
bicycle control example, 189

characteristic equation, 40, 185, 190
characteristic polynomial, 185
circuit theory, 95
code

FUNCTION, 48
structure, 51
structured, 209
SUB, 48

codec, 225

computer, 25
embedded, 26, 204
languages, 207
memory, 25, 204
processor, 25
stack pointer, 205

computer language, 45
constraints, 196
control

bang-bang, 200
discrete time, 77
dynamics, 39
feedback, 36
gain, 37
minimum time, 200
nested loops, 58, 191
nonlinear, 58
optimal, 199
PID, 36
pragmatic, 41
sliding, 200
state, 39
theory, 36, 39
topology, 185
transfer function, 39

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

264 INDEX

convolution, 157
coordinates

Cartesian, cylindrical, spherical, 167
correlation, 159
cost function, 199

Darlington, 52
data compression, 225
Denavit-Hartenberg, 6, 172
D-H parameters, 177
difference equations, 150
Direct memory access (DMA), 206
DirectX, 27, 223
discrete time, 150
disturbances, 187
dynamics, 42, 179

EAROM, 211
edge tracing, 232
eigenvalue, 141, 171
eigenvector, 140, 171
embedded microcomputer, 43
embedded processor, 210
estimating velocity, 75
experiment, 43

feedback
nested loops, 187
non-linear, 187

feedback topology, 185
FET, 30
fi lter

low-pass, 231
switched, 105

Finite Impulse Response, 231
four terminal network, 98
frames, 173
Freeman Chain, 235
fuzzy logic, 198

gear, 161
gearbox, 41
GPS, 159
graphics, 46
Gray code, 19

H-bridge, 30, 70
hexadecimal, 50
hydraulic, 16

image
binary, 226
fi lter, 229
grayscale, 226

integrator, 100
interrupt, 205

timer, 242
inverse kinematics, 42, 178
inverted pendulum, 80
isocline, 194

Jacobian, 180
joystick, 243

key frame, 226
kinematic chain, 173
kinematics, 41

Laplace transform, 146
logic circuit, 113
low-pass fi lter, 48
lunar probe, 200
LVDT, 19

machine vision, 221
mark-space, 32
matrix, 131

inverse, 138
transpose, 136
unit, 136

maximum principle, 200
mechanism, 161
microcomputer ADC, 211
Micromouse, 3, 6, 7
microprocessor, 211
motor, 161

AC, 12
axial fi eld, 15
back-e.m.f, 163
brushless, 10
DC, 10
differential equation, 164
drag cup, 14
effective pulley, 164
gear ratio, 164
hysteresis, 15
induction, 13, 31
linear, 16
permanent magnet, 162

INDEX 265

single phase, 13
stepper, 10, 11, 15, 27, 50, 52
universal, 12

NEXT operator, 154
null string, 54

OCX, 223
operational amplifi er, 35, 99
opto isolator, 32

partial differentiation, 179
phase plane, 192
phase-advance, 105
PIC, 211
pixel, 222
pneumatic, 16
polling loop, 205
position controller, 40
PRBS, 159
printer port, 50, 55
Printer port, 52
prismatic, 173
processor

embedded, 209, 210
proportional band, 41, 72
pseudocode, 209
pseudo-random binary sequence,

159

QBasic, 45

real-time, 47
regression, 247
Robocow, 237
robot, 41

mobile, 49, 52
revolute, 166

rotation, 169

sensor, 16
acceleration, 21
crossed Hall effect, 19
frame-scan, 222
Hall effect, 19, 82, 241
incremental encoder, 17
linescan, 23, 222
LVDT, 105
odometry, 238

phototransistor, 22
position, 16
potentiometer, 17, 19, 56
rate-gyroscope, 21
Sick, 222
tachometer, 21
velocity, 21
video, 24
vision, 22, 221

servomotor
AC, 13

shape recognition, 251
signal conditioning, 35
simple harmonic motion, 148
simulation, 120

analog, 128
position control, 125

singularity, 178
solenoid, 7, 10, 250
solid state relay, 31
s-psi curve, 235
stability, 40, 145, 149

bounded, 193
state equations, 143

discrete time, 152
matrix, 127

state variable, 40, 91, 98, 117, 118, 123,
150, 185, 189

steering, 249
subroutine, 204

tacho
DC motor, 21

tensor, 131
trajectory, 193
transfer function, 148
transformation, 136
transformation matrix, 170
transistor, 27
translation, 172
Turing machine, 203

Unimation Puma, 174

vector, 131
velocity control, 70
video, 27, 223

chip, 224
fi lter, 223

266 INDEX

for Windows, 223
renderer, 224

vision guidance, 243
Visual Basic, 45

webcam, 24

z-transform, 154

	Frontmatter
	Introduction
	The Bare Essentials
	Gaining Experience
	Introduction to the Next Level
	Electronic Design
	Essential Control Theory
	Vectors, Matrices, and Tensors
	Mathematics for Control
	Robotics, Dynamics, and Kinematics
	Further Control Theory
	Computer Implementation
	Machine Vision
	Case Studies
	The Human Element
	Index

